AD-A252 404 \TION PAGE

Form Approved
OPM No. 0704-0188

]

Headq
Manageme

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE

January 1992 Technical

responss, including the time for reviewing instructions, ssarching existing data sources
. estimaie or any other aspect of this collection of information, inciuding suggestions
1 Davis Highway, Sulte 1204, Arlinglon, VA 222024302, wwmmhdhbmﬁonmwm Office of

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Development Statistics for the UH-1 Ada Feasibility Study

6. AUTHOR(S)

IIT Research Institute
4600 Forbes Bivd.
Lanham, MD 20706

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
T Research Institute

4600 Forbes Blvd.

Lanham, MD 20706

8. PERFORMING ORGANIZATION 2 |
REPORT NUMBER

N/A

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office
OSD(A)ODDDRE(S&T)/AFF
RM 3E118/Pentagon
Washington, DC 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT o
Approved for public release; distribution unlimited.”

12b. DISTRIBUTION CODE

'\/ [A3. ABSTRACT (Maximum 200 words)

the UH-1 Flight Simulate or (FS). It presents results for the following subject areas:
o The Application of function point analysis to estimate trainer size;

o the application of AdaMAT/D to evaluate trainer quality.

this document describes data collection and analysis techniques that were applied to an Ada software redevelopment of

o the application of Ada COCOMO, SoftCost Ada, and SASET models to estimate schedule and efforts;

The report also describes results of a project profile study to characterize aspects of the development environment.

14, SUBJECT TERMS
Ada cost models Ada, software redevelopment, function point

18. SECURITY CLASSIFICATION

UNCLASSIFED

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

OF ABSTRACT
UNCLASSIFIED

T T T YT T
19. SECURITY CLASSIFICATION

15. NUMBER OF PAGES
78

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-550

Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

- EE U - D I I A U) E T G B D Ewm e e
”

’

DEVELOPMENT STATISTICS FOR THE

UH-1 FS ADA FEASIBILITY STUDY

January 1992

Prepared for:

PM TRADE
ATTN: AMCPM-TND-ED
12350 Research Parkway
Orlando, FL 32826-3276

Prepared by:
IIT Research Institute

4600 Forbes Boulevard
Lanham, MD 20706-4324

17388

92 . \\\\\\\\\\\\\\\\\\\\\\ﬂ\\\\\\\\\\\\\\\\\\\\x

The information and data contained herein have been compiled from government and nongovernment
technical reports and other independent sources and are intended to be used for reference purposes. Neither
the United States Government nor IIT Research Institute warrants the accuracy of this information and data.
The user is further cautioned that the data contained herein my not be used in lieu of other contractually cited
references and specifications.

Publication of this information is not an expression of the opinion of Tne United States Government or of
IIT Research Institute as to the quality or durability of any product mentioned herein. Any use for advertising
or promotional purposes of this information in conjunction with the name of The United State Government
or IIT Research Institute without written permission is expressly prohibited.

G N I N M BN BN N B Be D EE B AE B I B nE W

—

L

-—-—-----——-—-

TABLE OF CONTENTS

SECTION PAGE
1.0 INTRODUCTION .. i i it ittt ittt et tte st tnseacsaanonennanesn 1
1.1 BACKGROUND ... it ittt ittt ittt sneesanenannannnn. 1

1.2 OBJIECTIVE . ittt ittt ittt ettt teneeasaananeenannnss 1

1.3 X 2 24 20 - X) < (A 1

1.4 REPORT ORGANIZATION ... i i it ettt et eeiannnn 2

2.0 SYSTEM OVERVIEW | . i i ittt et ettt taeaeannns 4
3.0 CHARACTERIZING THE DEVELOPMENT ENVIRONMENT AND ITS PRODUCTS 5
31 COMPARISON OF SOURCE CODE SIZEttt ittt et e e i 5

32 SOURCE CODE ATTRIBUTES ittt et e e 6

33 USEOF ADA FEATURES ittt it e 7

34 PHASE DISTRIBUTION OF EFFORT AND SCHEDULE 8

35 PRODUCTIVIT Y ..t it i i et i et et et e e e et e it 10

4.0 ESTIMATING TRAINER SIZE USING FUNCTION POINT ANALYSIS 11
4.1 PROCEDURE FOR ESTIMATING SIZE USING FUNCTION POINTS 12

4.2 RESUL TS i i i it ittt i et st et s ettt ae st iannnennn 13

50 ESTIMATING TRAINER COSTS i it ittt et e te e 15
6.0 TRAINER QUALITY EVALUATION i it ittt i 17
6.1 ADAMAT /D RESULTS ... i i i e et ettt et et 18

6.1.1 Product OVeIVIEW . . . o ittt ittt ittt ettt e ettt s taanaeannna, 18

6.1.2 Approach e e 18

6.1.3 RESUIS i i e e et e e e 19

6.2 ERROR DENSITY ANALYSIS e i e e et e et eee 19

7.0 CONCLUSION .. i it ettt et e et e e et et e et e e e 23

LIST OF TABLES
TABLE NO. PAGE
31 UH-1 FSSOURCE LINESOF CODE SIZE ie e 5
3.2 SOURCE CODE ATTRIBUTES ... ittt ittt ittt e et te e e e eiee 6
3.3 PHASE DISTRIBUTION OF EFFORT (%)o ittt e e iae e 9
3.4 PHASE DISTRIBUTION OF SCHEDULE (%)c.citiiiiiiiii e 9
3-5 UH-1 PRODUCTIVITY .ottt i sttt ittt et ittt e e sa et 10
4-1 UH-1 SIZING HISTORY ..ttt i ittt ittt sttt st ee et 11
4.2 SUPPORT SOFTWARE NOT INCLUDED IN FUNCTION POINT ESTIMATE 13
4.3 COMPARISON OF FUNCTION POINT ESTIMATE TO ACTUALSIZE 14
5-1 COSTS FOR SOFTWARE DEVELOPMENT ittt ettt ieaeans 16
5-2 COSTS FOR SOFTWARE DEVELOPMENT AND SYSTEMS INTEGRATION 16
6-1 ADAMAT/D SCORES BY QUALITY CATEGORY ...ttt ieeiiaannn. 20
6-2 UH-1 FSERROR/CHANGE RATE i it it it e eteeeenn 22
ii

LIST OF FIGURES
FIGURE NO. PAGE
3-1 Use of Ada Features - Comparisonto SEL Data. 7
6-1 ADAMAT/D ReSUILS. . ..ottt ittt ittt it e it i it aa e 21
6-2 Trouble Report Classification.cvvt it it ieaenian 22
6-3 History of Reported Software Problems. it 22
LIST OF APPENDICES

SECTION PAGE
A SOFTWARE PROJECT DATA COLLECTION FORMS FOR THE UH-1 ADA

FEASIBILITY PROJECT ... it i ittt e aeas A-1
B INSTRUCTIONS FOR SOFTWARE PROJECT DATA COLLECTION FORMS B-1
C STATEMENT PROFILER DEFINITIONS e C-1
D DERIVATION OF FUNCTION POINT COUNT FOR THE REAL-TIME CSCi

OF THE UH-1 FLIGHT SIMULATOR it D-1
E DERIVATION OF FUNCTION POINT COUNT FOR THE AUTOMATED

COURSEWARE SYSTEM ittt E-1
F RESOURCE ESTIMATION REPORTS s F-1
G ADAMAT REPORT e et G-1
H REFERENCES i i e i e H-1

AN WA B I N BN BN W BN B WS N BE G BN W EE me e

—

ACS
ADADL
ADAMAT
CcCC

CDR
COCOMO
CSC

CSCl

DCE

DCL
DOCGEN
DR

EDSI

FPA

FOR

FS

GAT

(o}

IR&D
KSLOC
NTSC

MB

NSIA CWG
PDL

PDR

PM

PM TRADE
RFP
SASET
SEL
SLOC
SRR

SSR

STR
TESTGEN
TRR

LIST OF TERMS AND ABBREVIATIONS

Automated Courseware System
Ada-based Documentation and Design Language
Ada Measurement and Analysis Tool
Configuration Change and Control
Critical Design Review

Constructive Cost Model

Computer Software Component
Computer Software Configuration I[tem
Digital Conversion Equipment

Digital Command Language
Documentation Generator

Discrepancy Report

Equivalent Delivered Source Instructions
Function Point Analysis

Final Qualification Review

Flight Simulator

Generic Aircrew Trainer

Instructor Operator Station

Internal Research and Development
Thousands of Source Lines of Code
Naval Training Systems Center
MegaBytes

National Security Industrial Association Computer Working Group

Program Design Language

Preliminary Design Review

Person Month

Program Manager for Training Devices
Request for Proposal

Software Architecture Sizing and Estimating Tool
Software Engineering Laboratory
Source Lines of Code

System Requirements Review

Software Specification Review
Software Trouble Report

Test Generator

Test Readiness Review

——

DTIC TaB
Unanncunced
Just:rlcation

O

loeeis_l on rgr
NTIS cRraax

e

By

| Distribution,
e A
Ava{lgyi;itv Codes

1at Specia}

y
K |

Avail andjop

iv

(This Page is Intentionally Left Blank)

e

-

A WS N IS BN N BN N B N IS EE BE GE B B uE am e

1.0 INTRODUCTION

1.1 BACKGROUND

The Army Material Command’s Program Manager for Training Devices (PM TRADE) performs the
principal role of acquiring training devices and training aides for the soldier to enhance operational proficiency
and primary skills. The cost effectiveness of current development practices and a comprehensive methodology
to improve the quality of the software in these automated systems have not been assessed or developed. As
part of a tri-service initiative among PM TRADE, Naval Training Systems Center (NTSC), and United States
Air Force Aeronautical Systems Division Deputy for Simulators, PM TRADE is performing research into the
use of the Ada programming language to evaluate its impact in developing flight simulators.

To determine the feasibility of using new technologies for trainers, a baseline must be established
against which the technology effects can be measured. Specific aspects of a software project are quantified
to allow an organization to understand its development characteristics. A baseline is established as data are
collected and projects are measured. Meaningful analyses of the data result in an improvement in an
organization’s understanding of the software development process within its environment and provides insight
into parameters of interest such as productivity, maintainability, and cost. Subsequently, improvement in
software development can be effected via the planned application and evaluation of new development
technologies.

In the acquisition of a new system, especially where software is a sizable portion of it, a major problem
of the developing organization is how to identify which software qualities are important, and then how to
specify them in the form of requirements. As the system evolves during development, the need arises to
determine how well those requirements are being satisfied. Each software system is unique in its level of
software quality requircments. There are basic system characteristics which affect the quality requirements,
and each systcm must be analvzed individually for its fundamental characteristics.

1.2 OBJECTIVE

Our basic goal was to implement an Ada Data Collection and Analysis Program and coordinate the
program with the development contractor to fulfill the goals of defining productivity, cost, and quality metrics
to support future acquisitions. This paper describes our approach to data collection and analysis, and how
techniques were applied to one particular trainer development project, the UH-1 Flight Simulator. The results
of the study should be a greater understanding of the software development process, product improved
simulators, and associated specifications and contracts.

1.3 APPROACH

We chose an approach that combines a practical, proven methodology for measuring software quality
with experiments that are designed to measure differences in Ada programming practices that impact
productivity and software quality. The proven methodology is one that was designed and developed at the
NASA/Goddard Space Flight Center Software Engineering Laboratory (SEL). The SEL was founded in 1976
to carry out studies and measurcments related 10 evolving technologies in the flight dvnamics area. In 1985,
the SEL initiated an effort to study the characteristics, applications, and the impacts of Ada. The SEL has
subsequently collected detailed development data from a total of eight Ada projects. The goals of the SEL
are to understand the software development process; measure the effects of various methodologies, tools, and

models on this process; and then to identify and apply successful development practices. So that the expense
of data collection does not get out of hand, their major emphasis is to define measurement goals and let the
goals drive the data that are being collected [1,2].

Data collection and analysis for the UH-1 FS Ada Feasibility Study focused on five measurement
objectives:

L. Provide a profile to characterize aspects of the development environment.

2. Quantify some of the effects of Ada on measures of significant importance such as
productivity, reliability, reuse, and maintainability.

3. Determine how the trainer development that is the target of this study compares to
trainer developments in non-Ada languages.

4. Determine how 1o best estimate the cost of trainer software development in Ada.
S. Evaluate the feasibility of using function points to estimate trainer size.

The data required to support UH-1 measurement objectives were collected by using the following five
methods: 1) completion of a data collection form by the developer, 2) observation of development, 3) code
analysis, 4) interviews with the developer, and S) review of project software documentation. The data
collection form was maintained throughout the project and updated at major milestone reviews. The
completed form is contained in Appendix A. Instructions for completing the form are in Appendix B. The
form contains information that is not only used to support the project profile study, but it also supports
application of three cost estimation models.

Software cost estimation models were applied at three different intervals throughout the project in
order to update schedule and effort projections. When model resulis were reviewed at PDR, there was much
discussion on the estimated size of the program which was believed to be too high. The fifth measurement
objective, evaluating function points as a means to estimate trainer size, was an outgrowth of these discussions.

An enhanced Intermetrics Statement Profiler is one of the automated tool used for code analysis. By
passing source code through the tool’s parser, it will count the usage of various Ada statement types and
special Ada features. The tool currently operates on a VAX system under VMS. The tool makes use of a
parser that was previously developed by Intermetrics, Inc. for their 'Statement Profiler’ tool. The 'Statement
Profiler’ is available from the Ada Software Repository. The Intermetrics tool was enhanced to include
additional output counts and user interfaces were changed to make them easier to use. In some cases, some
constructs were not considered in the parser. In these instances, a character string that uniquely identifies the
construct is flagged by the tool and the appropriate counter is incremented.

1.4 REPORT ORGANIZATION

The following sections describe the studies and experiments that were performed, and data that was
collected to support the analysis. Each major section addresses a separate mcasurement objective:

. Section 3.0 presents the results of a project profile study to characterize aspects of the
development environment.

. Section 4.0 describes the application of function point analysis to estimate trainer size.

G B BN WS WS N NI IS SN A0 NS GE BE N BE B o ae e

. Section 5.0 describes the application of Ada COCOMO, SoftCost Ada, and SASET models
to estimate schedule and effort.

. Section 6.0 presents the results of the trainer quality evaluation that was based on an
evaluation of software changes and errors and on the application of AdaMAT/D.

When available, results from other measurement programs are presented to provide a basis for comparison.
We were unable to acquire trainer-specific data for a comparative project study. A brief overview of the UH-1
FS system is presented in Section 2.0. A summary of the lessons learned from the measurement process are
presented in Section 6.0

2.0 SYSTEM OVERVIEW

The UH-1 FS is a flight simulator for the UH-1H helicopter. It teaches instrument flight maneuvers
and procedures as well as normal and emergency cockpit procedures to Army aviators. The UH-1 FS consists
of four independently operated helicopter cockpits, a central two position instructor console, a digital
computer system and some ancillary equipment. Each cockpit has its own five-degree-of-freedom motion
system and a sound system.

The UH-1 Flight Simulators which were designed in the late 1960’s had become difficult and expensive
to maintain. The spare memory and spare CPU time had been depleted by software changes. The Army
proposed a product improvement plan to swap-out the aging UH-1 FS computer system to improve its
capability to be supported and to provide a means to split the 4-cockpit trainer into two 2-cockpit trainers,
if needed.

There are two computer software configuration items (CSCI'’s); namely, a Real-Time CSCI which
performs all simulation and processing functions of the UH-1 FS and a Non-Real-Time CSCI which contains
all support, diagnostic, and courseware for the UH-1 FS. The latter encompasses the Ada Programming
Support Environment (APSE), the Automated Courseware System (ACS), any database/support software and
any commercial software tools.

The Automated Courseware System (ACS) software is the component providing the capability to
develop and modify trainer courseware via the Automated Courseware workstation. The ACS provides for
the formulation and editing of UH-1 FS mission scenarios consisting of navigational aides, initial operating
conditions, and real-time maps. Courseware data entry tasks are performed on the workstation and are
transferred to the real-time systems (at distributed sites) via a courseware floppy disk.

The development computer system was a 16 MB MicroVAX II operating under a VMS operating
system. Tools which supported the development environment included a TeleSoft Ada compiler, ADADL,
DOCGEN, TESTGEN, and CCC. A VAX/VMS hosted Ready Systems RTAda cross compiler was used to
generate object code for an MC68030 target system. The target computer system was a network of loosely
coupled MC68030 processors operating as one six node configuration (with a single node allocated to each
of the four cockpits and a single node allocated to each half of the instructor operator station) or as two three-
node configurations when the trainer is split. Each node performs the bulk of the real-time simulation for
the cockpit or Instructor Operator Station (IOS) node locally so as to minimize the amount of data passed
between the nodes in real time.

The ACS system console terminal incorporates a single-board Motorola 68030 series microcomputer
along with Motorola memory and interface boards.

3.0 CHARACTERIZING THE DEVELOPMENT ENVIRONMENT AND ITS PRODUCTS

Analyses of detailed profile information that characterize aspects of the development environment and
the products of that environment are useful to better understand the software development process for an
application domain. Profile studies are not designed to evaluate whether the characteristics are right or wrong
but to report on the method of software development [1]. The following sections describe characteristics of
the UH-1 FS program relating to source code attributes, phase distribution of effort and schedule, and
productivity.

31 COMPARISON OF SOURCE CODE SIZE

Table 3-1 contains a comparison of source code size when different counting conventions are used to
provide sizing information. Line counts were obtained by applying an enhanced version of the Intermetrics
Statement Profiler on baseline version 15 of the source code which was the version of software shipped to the
first trainer installation site, one month prior to Governmert Final Inspection. A description of counting
conventions for physical lines, terminal semicolons, body semicolons, and essential semicolons is provided in
Appendix C. The body semicolon count is 60 percent iarger than the terminal semicolon count. The large

TABLE 3-1

UH-1 FS SOURCE LINES OF CODE SIZE

Deliverables Language | Physical Terminal Body Essential Software
Program Lines Semicolons | Semicolons | Semicolons Type
[0S CSC Ada 49,809 11,671 15,591 3,546 | Application

Trainee Station Ada 49,802 12,489 18.722 7511 { Application
CsC
ACS CSC Ada 24,774 6,523 9,905 1.870 | Application
Ada 6,242 1,772 1.859 1,529 Support
Ada 46,305 6,159 25,639 2,709 | Application
Common to
ACS, 10S and Ada 387 97 97 67
Trainee Station DCL 613 584 584 N/A Support
Assembly 8919 6,545 6.545 N/A
DCE Diagnostics Ada 14,962 7,334 7,481 910 Support
Target Computer Ada 7,081 1,061 3,561 113 Support
Diagnostics
Daily Readiness Ada 5,934 1,187 1,253 646 Support
TOTAL 214,828 55,423 91,237 18,901

size differential between body semicolons, which include the number of carriage returns in each package
specification, and terminal semicolons is attributed to the general packaging framework used on the UH-1
program which resulted in about three package specifications for each body.

The completed project questionnaire in Appendix A shows the categorization of code that are new,
reused/modified, and reused/unmodified for terminal and body semicolon counts.

32 SOURCE CODE ATTRIBUTES

Table 3-2 contains a summary of source code attributes. Statement counts were obtained by applying
an enhanced version of the Intermetrics Statement Profiler. Definitions for Ada statement types are provided
in Appendix C.

TABLE 3-2

SOURCE CODE ATTRIBUTES

Program Units

Number of Objects

Number of Packages 322
Number of Tasks 33
Number of Program Units 1,517

Number of Blocks

Statement Types

Number of Logicals 13,846
Number of Data Manipulations 14.461
Number of Ada Tasking 63
Number of Data Typing 2,138
Number of Mathematical 8,733
Number of Declarations 4,041

Ada Features Data

Number of Exit Statements 147
Number of Use Clauses 1.269
Number of Exceptions 351
Number of Generics 16

S O N IS OGP NS B B B G NS G G G BN G o an e

33 USE OF ADA FEATURES

In an effort to achieve some measurement of the use of the features available in the Ada language,
the SEL identified six Ada features to monitor: generic packages, type declarations, packages, tasks,
compilable PDL, and exception handling [2]. The SEL then examined the code to see how little or how much
of these features were used. The purposes of this analysis were, first, to determine to what degree features
of Ada were used by the Ada project, and second, to determine whether the use of Ada features "matured”
as an environment gained experience with the language. SEL data on the use of Ada features were obtained
using the Ada Static Source Code Analyzer Program developed at the University of Maryland. Analysis of
the use of compilable PDL and exception handling did not show any trends, however, trends were observed
in the use of other features. Figure 3-1 show SEL trends in the use of Ada features over a span of seven
years, beginning with their first Ada project in 1985. A total of eight Ada projects are included in the trend
analysis {3]. Ada features data for the UH-1 FS are included in the trend analysis for comparison.

Strong Typing Generics
7 b ~ <
531 -3 a
L
o]
384
334
L] % 28
23
184
134
3
3 . ’ -
SEL8580 SELW788 U1 SELSSE9 SEL 8048 SEL 8538 Uh-1 SELE7-88 SEL889 SELSO®1
TOTAL TYPES GENERIC PACKAGB COUNT
STATEMENTS TOTAL PACKAGE BODY COUNT
Package Size Tasking

)
SELE58 SELET4S SELES9 UM SEL 9091 Uhe SELSSSS SELEVSS SELOS4S SEL90-91
PRYSICAL KSLOC TOTAL TASKS
PACKAQRS

Figure 3-1. Use of Ada Features - Comparison to SEL Data.

The use of strong typing in these software systems was measured by the number of type and subtype
declarations divided by the number of Ada statement (terminal semicolon count) multiplied by 100 to obtain
a percentage. It is generally believed that the strong typing of Ada will prevent some types of interface errors.
The measure provides a method of observing trends in the use of Ada type declarations. In the flight dynamics
environment, the amount of typing has increased over time. This has been attributed to the developers
becoming more comfortable with the strong typing features of Ada and using its capabilities 1o a fuller extent
[2.3]. The proportion of type declarations to Ada statements on the UH-1 was 4.42 percent.

The generic package is a tool in the Ada language that contributes to software reusability. The SEL
has placed a strong emphasis on the development of reusable components and has seen an increase in the use
of generic packages from the first to the current Ada project. Additionally, the SEL trends reflect an increased
understanding of how to use generic Ada packages effectively in a flight dynamics environment. It is currently
perceived that the proportion of generic packages to total package body count will level off at about 50 % on
future projects as the SEL reaches the limit at which existing program units can be generalized [2,3]. There
were a total of 16 generic packages developed on the UH-1 program representing 19 percent of the total
package body count. The use of generics on the UH-1 project, which was the development team’s first Ada
project, was favorably comparable to the trends documented by the SEL.

The average size of packages was measured by dividing the number of physical Ada lines of code by
the number of packages. The SEL trends show an average size of the packages for the first Ada projects are
much larger than the average size for subsequent Ada projects. The variation is due to a difference in the
structuring method between the first Ada project and all subsequent Ada projects. The first Ada project was
designed using a heavily nested structure with one package at the root of each subsystem and where package
specifications were nested with package bodies. Subsequent projects were designed utilizing the view of
subsystems described by Grady Booch as an abstract design entity whose interface is defined by a number of
separately compilable packages [2,3]. UH-1 FS design methodology is consistent with the latter. The average
size per package on the UH-1 was 630 physical lines.

A comparison of tasking between applications in the flight dynamics environment and the trainer
environment indicate that the tasking feature of Ada is highly application dependent. The use of this Ada
feature at the SEL has declined with each successive Ada project as personnel have learned to use tasking only
in those situations that are appropriate [2,3]. A total of 33 Ada tasks were impiemented on the UH-1 FS.

34 PHASE DISTRIBUTION OF EFFORT AND SCHEDULE

Phase distribution of effort entails the allocation of staff throughout the requirements, design,
implementation and testing phases of the development cycle. Using milestone dates to denote the end of one
phase and the beginning of the next, the UH-1 FS project showed nearly 40 percent of the total effort was
expended prior to CDR and approximately 60 percent was expended after CDR. The phase distribution of
effort was contrary to other published data [4] that indicates a shift of effort from the integration and test
phases to design phases. Tables 3-3 and 3-4 illustrates the traditional allocation of time and effort to life-cycle
phases for two Ada-specific models: Ada COCOMO and SoftCost Ada. The 41:59 distribution of effort
before and after CDR for the UH-1 compares to a 50:50 distribution of effort for SoftCost Ada and a 52:48
distribution of effort for Ada COCOMO. The differences are attributed to four factors:

1. The UH-1 is a redevelopment of an existing system whereas effort distributions for the models are
based on new development efforts. It is reasonable to expect less time spent on defining requirements
on a redevelopment effort as compared to a new development. To illustrate, the system requirements
for the UH-1 were to "replicate current UH-1 FS functions and performance unless stated otherwise”.
This resulted in less time spent communicating requirements between the developer and the sponsor.

G N AN G BF O A BN BE AN N SN 5 A BN AN B B e

TABLE 3-3

PHASE DISTRIBUTION OF EFFORT (%)

SRR - SSR SSR - PDR PDR - CDR TRR - FQR
ADA
COCOMO
SOFTCOST 50 15 35
ADA
UH-1 16 25 59
TABLE 3-4

PHASE DISTRIBUTION OF SCHEDULE (%)

SRR - SSR SSR - PDR PDR - CDR TRR - FQR
ADA
COCOMO
SOFTCOST 50 15 35
ADA
UH-1 7 11 23 45 14
2. Phase distribution of effort for the UH-1 includes systems integration and testing to obtain a fully

functioning hardware-software system whereas effort distribution for the models does not cover
implementation.

The milestone dates were specified in the Request for Proposal (RFP). Further, dates for PDR and
CDR were specified as payment milestones for the developer. In an effort to meet payment,
milestones were scheduled earlier than what may have otherwise been considered optimum. For
example, the developer did not have compilable package specs by PDR which is one of the highlights
of the Ada Process Model, which is the basis of the Ada COCOMO model [4].

The developer used a structural model design methodology. A structural model is a domain specific
software architecture. Expectations are that structural model designs are transitional and reusable for
similar types of applications, i.e., flight simulators [5]. The developer utilized the concept of the
structural model in a Generic Aircrew Trainer (IR&D) project. During the development of the Ada
code for the Generic Aircrew Trainer (GAT), various methodology problems were uncovered. Work
on the GAT enabled the developer to iron out specific details of the structural model to be applied
to the UH-1 that would have otherwise been charged to the project.

A comparison of the phase distribution of effort to phase distribution of schedule indicates a

consistent staffing across the project with 41 percent of the time spent prior to CDR and 59 percent of the
time spent after CDR.

35 PRODUCTIVITY

Because so many definitions exist for software size measures in Ada, it is important that any
productivity value be qualified by the basis for the measure. We measured productivity on the UH-1 program
using two definitions: 1) terminal semicolons, and 2) body semicolons. We chose the first because sources
show it to be a more widely used definition. However, in the case of the UH-1 FS, productivity measurement
based on terminal semicolons penalize the developer because of the packaging structure which was used.

The general packaging framework was that each object in the system consisted of one message (i.e.
package) specification and one body with associated message specs. The message specification defined the
status of the object at any given time and contained only that information which was exported to other
portions of the system. Each object could have as many as four additional message specifications: DCE input
and output specifications that interface with Digital Conversion Equipment handlers/drivers, action request
specification that interface with malfunction control, and a test points specification used to access intermediate
test point variables to allow strip chart recording of variables during flying qualities tests. Since terminal
semicolons are not used in package specifications, productivity measures that are based on terminal semicolon
count penalize the developer that uses package specifications as the primary means of communication. The
body semicolon count for the UH-1 program was 60 percent larger than the terminal semicolon count
(reference Table 3-1).

With reused software factored in, the productivity for delivered Ada code on the UH-1 FS
redevelopment project is shown in Table 3-5. The productivity was high considering that this was the first Ada
project for the development team. (Only one of the lead designers had worked previously on the GAT.)
Factors that are believed to have influenced productivity are that this effort was a redevelopment as opposed
to a new development and that the structural model design methodology was partially reused from the GAT.
Section 3.4 discusses these factors in more detail.

TABLE 3-5

UH-1 PRODUCTIVITY

Productivity = 200 EDSI / PM Productivity = 316 EDSI / PM

EDSI counted in terminal semicolons EDSI counted in body semicolons

Developed code = new code + 16 percent rcused/modified code

Hours per person month = 152

Period extends from SRR to FQR (i.e., installation at first trainer site) and includes implementation

10

G R SN G O O G O N O NS O O O O GE B B ae

————_—————————————P

4.0 ESTIMATING TRAINER SIZE USING FUNCTION POINT ANALYSIS

At a project Lessons Learned briefing held subsequent to PDR, the results of the application of
SoftCost-Ada were presented to project sponsors and the developer. There were three issues raised with
regard to the validity of the estimates. Two addressed the impact of the structural model on productivity and
the existence of analogous data in the SoftCost-Ada database. The third was critical of the size of the project,
which the developer believed to be too high. It was decided to apply additional cost models when schedule
and effort projections were updated at the next milestone and to use function point analysis to estimate trainer
size.

Table 4-1 provides a history of the size estimates that were made at project milestones beginning with
the projection made by the developer in the proposal. Although the UH-1 FS Ada Feasibility Study was a
redevelopment of an existing system, it was impossible to derive an estimate from the existing system because
of an inability to determine what source listings matched the executable software. The software was written
in assembly and, over the years, many modifications were patched onto the system. The estimate at PDR was
provided by PM TRADE based on similar FORTRAN trainer applications. The estimate at CDR was based
on function point analysis and did not include support software. The following points summarize a few
observations relative to the sizing history:

. There is a tendency to underestimate support software. In all cases estimates for the Non-Real-Time
CSCI, which included all trainer support software, were low by a factor of 40% or more.

. Although the CDR estimate for total KSLOCS was very close to the actual terminal semicolon count,
the proposal estimate was the best estimate for individual CSCls.

. The proposal and PDR estimates support the notion that we tend to estimate in terminal semicolons
as opposed to body semicolons. In all cases, estimates were comparable to the actual size based on
the terminal semicolon counting convention.

TABLE 4-1

UH-1 SIZING HISTORY

I Real-Time CSCI Non-Real-Time CSCI Total KSLOC

Proposal 311

PDR Estimate 24.6 7.1 31.7

CDR Estimate 44.7 73 + 520 +

(Function Points)

Actual (Terminal 303 251 554

Semicolons)

Actual (Body 59.9 312 91.2

Semicolons)

11

4.1 PROCEDURE FOR ESTIMATING SIZE USING FUNCTION POINTS

Function point analysis (FPA) measures an application by quantifying the information processing
function associated with five data types: external inputs, external outputs, external inquiries, logical internal
files, and interfaces. Obtaining the trainer size estimate was accomplished in three steps:

1. Compute the unadjusted function point measure by classifying and counting the five data types
2. Adjust for processing complexity (+/- 35%)

3. Apply the language expansion factor.

The function point total is a unitless measure of the functionality of the software, independent of lines
of code or implementation language. Several sources have observed a relationship between function point
measures and the SLOC estimate for the implementation language [6]. For example, two programs of
identical function are implemented in two different languages, FORTRAN and Ada. The function point
measure for each program is the same at 100. Using a language expansion factor of 71 for Ada and a factor
of 105 for FORTRAN, the same program implemented in Ada takes 7,100 SLOC and 10,500 lines in
FORTRAN.

Initially, language expansion factors exemplify typical values for an organijzation based on the
developer’s particular dataset. Variations in programming skill, programming style and function point
counting conventions will result in different language expansion factors for the same language. These factors
may require modification after the user has applied the model successively and has evaluated the estimated
versus actual size.

Two function point estimates were derived for the UH-1 FS: one for the real-time trainer application
software and one for the Automated Courseware System (ACS). Support software that was not included in
the function point estimate is listed in Table 4-2. The size of each support software component is provided
in terminal semicolons. Support software consisted of anything having to do with setting up the training
environment. There was some difficulty in determining what software constituted support software. The
definition that was adopted was anything having to do with setting up the environment was considered to be
support software.

Appendices D and E describe the process lo‘idéntifv function point parameters for the Real-Time
CSCI and ACS, respectively. The appendices illustrate conventions that were adopted for identifying and
counting function point parameters. Interpreting the guidelines [9] to define and count function point
parameters, and extending the guidelines to training devices was not a strait-forward process. The greatest
difficulty was determining how instrument display devices, malfunctions, and various flight controls should be
grouped and counted. Examples of the conventions that were adopted are as follows:

. Group switches that work in conjunction with one another and count them as one input. For
example, the UHF Radio Set consists of six control: 1) function selector switch, 2) mode selector
switch, 3) preset channel control, 4) ten megahertz control, 5) one megaheriz control, and 6) five
hundredths megahertz control. The UHF Radio Set Controls were grouped and counted as one input
rather than counted as separate inputs.

. Group malfunctions according to the object that they affect rather than count each malfunction
separately. Hence, 113 malfunctions were grouped into 17 malfunction groups, i.e., fuel system
malfunctions, malfunctions affecting VHF navigation, instrument malfunctions, malfunctions affecting
engine lubrication, etc.

12

G N O OGN B E G O B B BN O) G G O ar aw A e

. Group instrument display devices according to the type of information that is displayed rather than
count each instrument display device as a separate output. For example, fuel quantity was counted
as one output displayable on four separate indicators: 1) minutes of fuel remaining - digital readout,
2) fuel quantity indicator, 3) auxiliary fuel low caution light, 4) 20 minutes fuel remaining caution
light.

TABLE 4-2

SUPPORT SOFTWARE NOT INCLUDED IN FUNCTION POINT ESTIMATE

Deliverable Description Size
Program

Target Computer || Tests main simulation computer equipment or ACS computer
Diagnostics equipment. Checks computer configuration and its options, all
memory units, peripheral units, and input/output units.

DCE Diagnostics || Performs functional checkouts of all trainer interface hardware 7,334
controlled by computer system with test values characteristic of real-
time operation.

PROM Related Assembly software used for booting the system 6.545

Daily Readiness || Checks out all trainer equipment to see if trainer is ready for daily 1,187
operation. Determines if all discreet and analog inputs and outputs
are operational.

Disk Partitioning [} Partitions the disk for real-time and non-real time loads. 97
Courseware Provides for transfer of courseware from the ACS to the Real-Time
Loader CSCI.
- " 1,773
Floppy Disk Formats the floppy disk on which courseware files generated by the
Initialization ACS are loaded.
Command Miscellaneous DCL command procedures. 584
Procedures
Total Statements JL 18.581

4.2 RESULTS

An Ada language expansion factor of 71 was used estimate size from the function point measure.
Table 4-3 show a comparison of the function point estimate to the actual size. Actual size refers to
application code which was counted using the terminal semicolons counting convention. The function point
estimated sizes were high for both the ACS and the Real-Time CSCI. The estimate for the ACS only had a
relative error of 11 percent as compared to the 32 percent relative error of the Real-Time CSCI. This is
probably due to the fact that function point analysis has historically targeted the ACS type of application, i.e.,
management information systems. A comparison of the actual size of the Real-Time CSCI to the estimated
size shows that an Ada language expansion factor of 48 (i.e., 1 function point = 48 SLOC) would have been
appropriate for this application. '

13

TABLE 4-3

COMPARISON OF FUNCTION POINT ESTIMATE TO ACTUAL SIZE

Deliverables
Program

ﬁ—%

ACS CSC

Actua) Size

6,523

Function Point
Estimated Size

7,304

Relative
Error

+ 11%

Real-Time CSCI

30,319

44,731

+ 32%

14

L

AR

5.0 ESTIMATING TRAINER COSTS

One of the measurement objectives of the UH-1 FS Ada Feasibility Study was to determine how best
to estimate development costs and schedule. There were several factors that would influence the study which
are discussed in Section 3.4, namely,

. The UH-1 is a redevelopment of an existing system.
. The milestone dates were specified in the RFP.

. The developer used a structural model design methodology which was developed on a previous IR&D
project and applied to the UH-1.

Although it was not known how much of an influence these factors would have on productivity and schedule,
it was decided to utilize cost models as though the project were a new development.

Three models were applied at CDR, and FQR as follows:
. Ada COCOMO as implemented by COSTMODL (version 5.1)
. SoftCost Ada (version 2.1)
. SASET (Software Architecture Sizing and Estimating Tool - version 1.7)

The SoftCost Ada model was also applied at PDR. These particular models were chosen based on their
availability to project personnel.

Model inputs were provided by the developer in the form ol a project questionnaire which was
maintained throughout the project and updated at major milestone reviews. The completed project
questionnaire is provided in Appendix A and identifies the model(s) to which each question applies. The size
data was obtained from baseline version 15 (referred to as the "Cold Start” tape) of the developer’s software
which was the version of software shipped to the first training site in Los Alimitos, California. This version
of the trainer was fully tested with the exception of the motion system. The questionnaire provides lines of
code counts using both terminal semicolons and body semicolons counting conventions. The terminal
semicolon count was input to the SoftCost Ada and SASET models. The body semicolon count was used as
input to the Ada COCOMO model.

Tables 5-1 and 5-2 provide a comparison of each model’s schedule and effort projections to the actual
project resources expended by the software developer. Table 5-1 shows costs for software development,
excluding implementation. Since there was not a "clean” break between the time that software was completed
and hardware/software integration began (activities were concurrent), the effort and 31 month schedule for
software development is estimated. Table 5-2 includes the implementation phase, therefore, Ada COCOMO
estimates do not apply.

In general, the model projections for effort were much higher than the actual effort expenditure
reported by the developer. It is believed that the factors discussed previously (i.e., redevelopment versus new
development, reused structural model design) had a significant impact on productivity. However, additional
data points would be necded to validate this assumption.

SASET allows the user to run the model, optionally specifying the CDR date. The scheduling
algorithms used by the Ada COCOMO and SoftCost Ada models, and SASET - when CDR was specified -

15

TABLE 35-1

COSTS FOR SOFTWARE DEVELOPMENT

s

EFFORT (PM) SCHEDULE
(MONTHS)

ADA COCOMO 308.9
SASET

SASET (CDR
SPECIFIED)

SOFTCOST ADA

FULL-TIME STAFF

227 (estimated)

TABLE 5-2

COSTS FOR SOFTWARE DEVELOPMENT AND SYSTEMS INTEGRATION

EFFORT (PM) SCHEDULE FULL-TIME STAFF
(MONTHS)
|
SASET 574

SASET (CDR
SPECIFIED)

SOFTCOST ADA

closely approximated the actual schedule for the UH-1. This is significant because the actual schedule slipped
a total of one year and six months when compared to the milestone dates specified in the RFP. A schedule
summary shown in Appendix A compares the RFP date with actual dates for each milestone. One of the
unanswered questions that arise when resulting schedule projections are compared to effort projections is the
reason for the discrepa.cy between estimated and actual effort when schedule projections were very much on
target with the actual schedule.

16

6.0 TRAINER QUALITY EVALUATION

There are various factors that are used to specify the types of quality desired in a particular software
product. The class of software usually drives the quality factors that are emphasized as most important {7].
For example, if software is expected to have a long life cycle, then maintainability and expandability are rated
as most important. If a software failure could result in the loss of human lives, software reliability, correctness,
and testability would be emphasized. Quality indicators will vary depending upon the definition of a quality
assessment framework.

There are two basic approaches for evaluating software quality 1) language specific and 2) non-
language specific. Generally non-language specific methods focus more on the measure of software
development techniques that promote quality (e.g. design techniques and methodology, design and code
reviews) than do the language specific techniques. In addition to measuring the use of quality enhancing
procedures, features of the actual software code are also measured. It is here that differences between
language specific and non-language specific frameworks are most apparent. The non-language specific methods
tend to measure generic aspects of the code such as the presence of machine code, excessive parameter passing,
and global versus local data - in other words, the use of coding procedures proven to yield structured,
descriptive, modular code showing high cohesion and low coupling. Conversely, the language specific approach
measures the existence of features unique to the language that will enhance or detract from software quality.
For example, Ada language features that enhance the quality of Ada code by promoting reusability include
the use of generic packages, tasks, exceptions, and information hiding. In a language specific quality
framework for Ada, it is these language features that would be measured.

Several specific methods and supporting tools were evaluated for potential application to the UH-1
FS project. Application of these tools and techniques are either manual or automated and most are not
entirely objective. Subjectivity in software quality analysis is unfortunately somewhat inherent in the basic
assumptions of what should be measured and how those measurements are made. Manual methods are
numerous and varied, relying heavily on questionnaires and/or manual code analysis. These types of quality
analyses are generally time intensive, not practically applicable to projects of moderate or large size, and not
widely adopted.

With so many techniques available, the outlying question is "Which method/tool is the right one to
use?” The advantage of any one approach over another is driven by the immediate project requirements and
long term goals. For projects of moderate to large size (with respect to the measures being taken), an
automated approach is obviously preferred. If specific features of the development language are of interest
and the positive or negative impact of their use is considered important, then a language specific approach
is warranted. These types of considerations address the immediate project requirements, but the long term
goals with respect to the developer’s software development system must also be considered. [f software is
primarily developed in one language, then a language specific approach may be preferred. If, however, anv
of several languages could be used or multiple languages are used within one project, then it may be
impractical to acquire several language specific tools and try to integrate the results; a non-language specific
technique may be preferable.

An automated language-specific technique was selected for the UH-1 FS program to support software
quality evaluation - namely, AdaMAT/D (version 1.1). Supplementing the quality evaluation is an evaluation
of data collected on error quantity and type. The following sections describe both approaches for measuring
software quality.

17

6.1 ADAMAT/D RESULTS

The following sections present an overview of AdaMAT/D, a description of how it was applied to the
UH-1 FS program, and subsequent results.

6.1.1 Product Overview

AdaMAT/D is an automated tool developed by Dynamics Research Corporation that operates by
examining compilable Ada source code with respect to its quality assessment technique. The technique used
by the tool is the counting of significant language features that are considered to promote or detract from the
quality of the product. These counts are the metric elements. Metric element scores are shown as a ratio of
the number of opportunities to comply with the preferred quality practice versus the number of actual
compliances. For example, a metric score for proper declarations of constants would be calculated as the
number of constants declared in the declarative section versus the quantity that could have been declared in
the declarative section (as opposed to being hidden from the user in the code). The metric scores are then
aggregated to a criteria level and then to a factor level. The factors evaluated by the tool are reliability,
portability and maintainability. Seven criteria are evaluated: anomaly management, independence, modularity,
self descriptiveness, simplicity, system clarity, and exactness. Criteria scores are derived from 250 metric values.
The tool provides the capability to tailor the metrics gathered and to tailor the aggregation process; that is,
the user has the ability to selectively omit metric elements and metrics. Weights can also be set to give greater
importance to one metric over another or one criteria over another in the score calculations. Results can be
viewed at any level in the hierarchy or reports can be triggered by user specified thresholds. Using thresholds,
the user would indicate minimal acceptable scores and a report would be generated only if the scores were
below the threshold.

Users were interviewed to obtain their opinion about the tool prior to procuring the tool for the

UH-1 FS project. The questions asked focused on how the product is used and value of scores. All of the
respondents felt it was difficult to learn how to use the tool at first but once it was made a part of the
development cycle it became easier to apply. The major hurdle was educating the users on both the tool and
the underlying metrics -- what they mean and how they work together to give a score. Almost all users
examined the scores at the criteria level as opposed to the factor level. It was felt that pinpointing the cause
for a low score and that the identification of areas where further Ada training would be beneficial was easier
at this level.

6.1.2 Approach

AdaMAT/D is most effective when the tool is tailored to an organization’s specific coding standards.
AdaMAT/D is run on a module by module basis throughout implementation in order to detect areas of non-
compliance to coding standards that detract unnecessarily from quaiity. Work is usually performed during the
early stages of code development to provide ample time to review results and to implement changes prior to
the start of the testing phase {8].

The first time user of AdaMat/D would apply the tool without any tailoring. The user would
subsequently locate the code containing actual examples of non-adherence, analyze the code segments involved
in order to determine the reason for non-adherence, the negative effects of non-adherence if any, and make
sample modifications to the code to see the actual effects of obtaining adherence to the criteria. By a metric
by metric analysis, the user would determine those data items to be collected from source code (when there
is a good reason not to adhere to principal) and tailor the product accordingly {8].

When the application of the ADAMAT/D tool to the UH-1 FS redevelopment was discussed at a
NSIA CWG meeting, one of the concerns that was raised was that different organizations would have different

18

ﬂ----------

standard for coding, even within the same application domain, i.e., trainers. The concern was that if the tool
were to be tailored for one organization, then subsequent projects would be required to conform to those same
development standards.

We were unable to acquire interim deliveries of the source code throughout implementation. Our
metric analysis started with the receipt of baseline version 15 of the source code which was the version of
software shipped to the first training site in Los Alimitos, California, one month prior to Government Final
Inspection. This version of the trainer was fully tested with the exception of the motion system. The source
code contained 577 separate files or approximately 200,000 physical lines of code.

The AdaMat/D reporting mechanism allows you to create a report on a single file or for different
combinations of Ada files. We had the option to calculate and report metric scores for each of the 577 files,
however, given that the tool was being applied after-the-fact, the effort would not have yielded results that
could be used to benefit the current project. Addressing the concerns voiced at the NSIA CWG meeting, it
was decided that it would be beneficial to apply an untailored version of AdaMAT/D to several trainer
applications and analyze the results prior to tailoring.

6.1.3 Results

Metric scores were calculated for three grouping of Ada source files and for the Ada source as a
whole. The three groups were 1) application software, 2) support software (described in Table 4-2), and 3)
software ported from the GAT and services software. Services software are general utilities that include math
functions, string functions, data interpolation, graphics functions and conversion routines. Table 6-1 provides
an overview of the resulting set of metric scores. Figure 6-1 provides a pictorial representation of the results.
A report for each set of metric scores is contained in Appendix G.

Table 6-1 shows scores at the factor level for each software group. The scores are computed based
on the number of opportunitics to comply with the preferred quality practice versus the number of actual
compliances. For example, there were a total of 98,225 opportunities tor compliance to enhance reliability
within application code of which there were 43,650 adherences. The results showed a high rating for
portability with an overall score of .96 out of 1.0. Scores for reliability and maintainability were lower at .47
and .56 respectively. Individual metrics scores were evaluated to ascertain if there several attributes of the
software that tended to pull the overall ratings downward. Of 1038 metric elements applied in the application
software area, 55 metric scores indicated a level of potential non-adherence below 70 percent. There were
some design decisions that resulted in some of the lower ratings. For example, the trainer structural model
emphasized a message passing scheme tha! resulted in a smaller proportion of hidden types. The impact that
these decisions have to sustaining engineering tasks is unknown.

6.2 ERROR DENSITY ANALYSIS

Changes made to software during the development were formally reported on change report forms.
Action requests were used during design and unit testing prior to the time that software was placed under
formal configuration control. After unit and CSC testing, all changes were documented using Software
Trouble Reports (STRs) and standard government Discrepancy Reports (DRs). If a government DR would
result in a software change, then a STR would be generated. On each STR the developer would supply a
description of the problem, when the problem occurred, the source and type of error, and all affected software
and documentation.

19

TABLE 6-1

RELIABILITY

ADAMAT/D SCORES BY QUALITY CATEGORY

Adherence

Non-Adherence

APPLICATION 43,650 54.575 98,225

SUPPORT 12,905 13,970 26,875 0.48

GAT & SERVICES 9,354 7.101 16,455 0.57

TOTAL 65,909 75,646 141,555 0.47
MAINTAINABILITY

Ad erence

Non-Adherence

APPLICATION 87,6011 74,012 161,623

SUPPORT 22.850 19,542 42,392 0.54

GAT & SERVICES 1272 8,141 26,453 0.69

TOTAL 128.773 101.695 230,468 0.56
PORTABILITY

APPLICATION

Adherence

487.577

Non-Adherence

SUPPORT 107,745 5.531 113,276 0.95
GAT & SERVICES 77.892 2,422 80.314 0.97
TOTAL 673,214 26314 699.528 0.96

ADAMAT/D SCORES - ALL CRITERIA

APPLICATION

Adherence

548,183

Non-Adherence

Total

635,673

Score

SUPPORT 124.568 23,568 148,130 0.34
GAT & SERVICES 91.112 10.609 101,721 0.90
TOTAL 763.863 121.067 885.530 086

20

Application Software Support Software
1000000 1000000

o
:
T

E RMINNN

10000 - ———
GAT & Setvice Software All UH-1 FS Software
= / —V;:
=
E 10(:)0:/ 2 ﬁé 7 Ewrmo; '/
E E E s =
EEE i B
I B B .-
mi BB . e Bl 7
Yom ew o em e an e e
Legend
% Adherences
Figure 6-1. ADAMAT/D Results. Wl e

Reported errors are classified according to the source and type of error. The developer’s form
identified eight classifications and an additional category labelled "other”. Figure 6-2 shows the classifications
of STRs for the UH-1 FS project. The figure shows a significant number of STRs, i.e. 39 percent, in the
performance problem category. The developer attributed the high number of performance problems to
erroneous classification by project staff. There were few time critical problems on the UH-1 of the nature that
would be described as a performance problem. When a problem was detected during testing, the tester would
not necessarily know the source of the problem and mark the STR as a performance problem because the
system did not "perform as expected”. In retrospect, the developer suggesied that the person who corrected
the problem should have been the one to select the problem class.

Figure 6-3 shows the history of reported problems accumulated by month up to the time that the
software was accepted at the first trainer site in August, 1990. The figure shows significant activity for a period
of about three months and then gradually dropping off in the last four months of the project. To the
developer's credit, the project sponsor was very impressed with the small number of open Discrepancy Reports
at the end of the project. At the time the trainer completed its in-plant test at the devcloper's site, there were
a total of only three open DRs. There was only one open DR when the trainer was installed and tested at
the first training site which was quickly fixed.

21

H.—-.

N

-mm

g,
{

Figure 6-2. Trouble Report Classification.

Error Rate

260 -
240 -

220 -

180 4
160 {
140 -
120
100 -
801

Number of STRs

40 1

9/90 10/90 11/90 12/90 1/91 2/91 391 4/91 501 6/91 7/91 8/
Month/Year

Figure 6-3. History of Reported Software Problems.
There were a total of 511 STRs generated on the UH-1 FS program. Software reliability, measured
by the number of changes or error corrections made to the software is shown in Table 6-2.
TABLE 6-2

UH-1 FS ERROR/CHANGE RATE

238 | SLOC = Physical Lines (includes comments) "

ERRORS/KSLOC
9.22 SLOC = Terminal Semicolons “

22

- - T I G T T I T B T T T T T A S e .

7.0 CONCLUSION

Based on the early results of the UH-1 FS Ada Feasibility Study, the development team and those
involved with the effort have concluded that Ada is a viable, usable technology capable of supporting real-time
projects for training devices. The data collected on this project has led to a greater understanding of both the
Ada language and its development methodologies. The study also raises some questions about the influence
that other factors, i.e., structural model development methodology and redevelopments of existing systems,
have on overall productivity. Additional data points are required to perform a more detailed analysis of the
characteristics of Ada software development process in the trainer application domain. The following general
observations were made by the study team during the experiment:

A SLOC count using the body semicolons counting convention was 60 percent larger than the
terminal semicolons count. The body semicolons counting convention counts a statement terminated
by a carriage return in the package specification and a terminal semicolon in the body of an Ada
program. The size differential between body semicolons and terminal semicolons resulted from a
packaging framework used on the UH-1 program which resulted in about three package specs for each
body.

With the exception of tasking, the use of Ada features was comparable to SEL data. UH-1 results
were compared with SEL trends in the use of Ada features over a span of seven vears, beginning with
their first Ada project in 1985. Four special Ada features were compared: strong typing, generics,
package size, and tasking. The comparison indicates that the tasking feature of Ada is highly
application dependent.

The phase distribution of effort was contrary to other published data [4] that indicates a shift of
effort from the integration and test phases to design phases for Ada projects. Nearly 6G percent of
the effort and schedule were expended after CDR. While additional data points are needed 10
validate these assumptions, the differences are attributed to four factors: 1) The UH-1is a
redevelopment of an existing system and this resulted in less time spent communicating requirements
between the developer and the sponsor, 2) The developer utilized the concept of a domain specific
software architecture (or structural model) which was developed on a previous IR&D project and
applied to the UH-1, 3) UH-1 phase distribution included systems integration and testing at the first
trainer installation site to obtain a fully functioning hardware-software system. 4) In an effort to meet
PDR and CDR payment milestones for the developer, milestone dates were scheduled earlier than
what may have otherwise been considered optimum.

A review of size estimates made at project milestones support the notions that 1) there is a tendency
to underestimate support software, and 2) we tend to estimate in terminal semicolons as opposed to
body semicolons. Size estimates were made in the proposal by the developer, at PDR by PM TRADE,
and at CDR using function point analysis. In all cases ¢stimates for support software were low by a
factor of 40 percent or more. In all cases, estimates were comparable 1o the actual size basc on the
terminal semicolon counting convention.

Using a language expansion factor of 71 for Ada, the function point estimated sizes were high for
both the ACS and the Real-Time CSCI. The estimate for the ACS had only a relative error of 11
percent as compared to the 32 percent relative error of the Real-Time CSCI. A comparison of the
actual size of the Real-Time CSCI to the estimated size shows that an Ada language expansion factor
of 48 would have yielded the correct results. Interpreting the guidelines [9] to define and count
function point parameters, and extending the guidelines to training devices was not a straight-forward
process. The greatest difficulty was determining how instrument display devices, malfunctions, and
various flight controls should be grouped and counted.

23

In general, the model projections for effort were much higher than the actual effort expenditure
reported by the developer. Model schedule projections closely approximated the actual schedule for
the UH-1. Itis believed that the high productivity experienced on the project can be attributed to two
factors: 1) The UH-1 is a redevelopment of an existing system and this resulted in less time spent
communicating requirements between the developer and the sponsor, 2) The developer utilized the
concept of a domain specific software architecture (or structural model) which was developed on a
previous IR&D project and applied to the UH-1. The cost models are typically used to estimate new

development efforts.

The major obstacle in achieving useful results with AdaMAT/D is educating the users on both the
tool and the underlying metrics -- what they mean and how they work together to give a score. The
resulting set of metric scores were difficult to interpret at the factor level given that there were no

historical data for comparison. [t was decided that it would be beneficial to apply an umailored

version of AdaMAT/D to several training devices and analyze the resulting trends prior 10 tailoring
The trend analysis could be used to develop coding guidelines for training devices.

24

APPENDIX A

SOFTWARE PROJECT DATA COLLECTION FORMS
FOR THE

UH-1 FS ADA FEASIBILITY PROJECT

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

Please complete this form to the best of your ability for your project. If the question is not applicable, please
mark it N/A. If you don’t know the answer, leave it blank. Mark each page containing confidential or
proprietary data "CONFIDENTIAL" on both its top and bottom in bold letters.

10.

Your name: Katherine Miller Date: 11 7/ 20 / 91

Title: Software Engineer Phone: (301) 459 - 3711

Firm or Organization:_1IT Research Institute

Address: 4600 Forbes Bivd., Lanham, MD 20706

Name of Project: UH-1 FS Ada Systems Engineering Feasibility Project

Contract Number:_N61339-88-C-0010

Customer Name: Naval Training System Center

Project Overview Description:_This project is a redevelopment of an existing UH-1 Flight Simulator

from assemblv to Ada to improve its capabilitv to be supported and to provide a means to split a singie

4-cockpit trainer into two 2-cockpit trainers, if needed. This project questionnaire reflects the following

developmental software components: 10S CSC, Trainee Station CSC, DCE Diagnostics, Target

Computer Diagnostics, ACS CSC.

Developer Contact: Ron Murphy Phone: (516) 563 - 7940

Customer Contact: Robert Paulson Phone: (407) 380 - 4362

Current Status: First trainer delivered and accepted 9/91. Source lines of code counts provided in this

form were obtained from the "Cold Start” tape which was cut in 7/91. ACS delivered and accepted in

9m91.

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

1. System/Software Characteristics

(]

[]
(1
(]
x]
[
(]

2. Complexity

a. Operating Environment (check one):

Manned Flight Unmanned Flight

(]

[] Avionics [1] Shipboard/Submarine

[x] Ground [] Commercial
(SASET: Class of Software)
b. Applications domain:

{1 Automation

[] Command & Control

1] Telecommunications

[] Test Systems

[x] Simulation

[1 Data Processing

{] Environment/Tools

[] Scientific

[] Avionics

[1] Other

(SoftCost-Ada: Type of Software)

a. Rate the difficulty of the processing logic:

Very low - Strait line code. Standard types. General structures. Simple math. No tasking.
Low - Simple operators. Standard types. General structures. Simple math. Simple data
manipulation. No tasking.

Nominal - Strait forward logic. Generics and standard structures. Standard I/O. Simple
tasking.

High - Highly nested logic. Numeric types. Libraries of packages and generics.
Complicated I/O. Concurrent tasking.

Very high - Stochastic logic. Unique types. Libraries of packages, tasks, and generics.
Sophisticated math and I/O. Rendezvous.

Extra high - Dynamic resource allocation. Unique types. Special libraries. Time
dependent task scheduling. Multiple exception handlers. Optimization and efficiency
concerns.

(SoftCost-Ada: Product Complexity)

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

b. The complexity of this CSCI is best characterized by which of the following statements?:

(1

(1

(1

[x]

[

[

Very low - Straightline code with a few non-nested structured programming operators:
DOs, CASEs, IF-THEN-ELSEs. Simple predicates. Evaluation of simple expressions:
for example, A=B+C*(D-E). Simple read, write statements with simple formats. Simple
arrays in main memory.

Low - Straightforward nesting of structured programming operators. Mostly simple
predicates. Evaluation of moderate level expressions, for example D=SQRT (B**2-
4.*A*C). No cognizance needed of particular processor or 1/O device characteristics. 1/0
done at GET/PUT level. No cognizance of overlap. Single file subsetting with no data
structure changes, no edits, no intermediate files.

Nominal - Mostly simple nesting. Some intermodule control. Decision tables. Use of
standard math and statistical routines. Basic matrix and vector operations. [/O
processing includes device selection, status checking and error processing. Multifile input
and single file output. Simple structural changes, simple edits.

High - Highly nested structured programming operators with many compound predicates.
Queue and stack control. Considerable intermodule control. Basic numerical analysis:
multi-variate interpolation, ordinary differential equations. Basic truncation, roundoff
concerns. Operations at physical [/O level (physical storage address translations; seeks,
reads, etc). Optimized 1/O overlap. Special purpose subroutines activated by data stream
contents. Complex data restructuring at record level.

Very high - Reentrant and recursive coding. Fixed-priority interrupt handling. Difficult
but structured numerical analysis: near-singular matrix equations, partial differential
equations. Routines for interrupt diagnosis, servicing, masking. Communication line
handling. A generalized, parameter-driven file structuring routine. file building,
command processing, search optimization.

Extra high - Multiple resource scheduling with dynamically changing priorities.
Microcode-level control. Difficult and unstructured numerical analysis: highly accurate
analysis of noisy, stochastic data. Device timing-dependent coding, microprogrammed
vperations. Highly coupled, dynamic relational structures. Natural language data
management.

(Ada COCOMO: Software Product Complexity)

c. Degree of Real-time

L]
(]
[x}
(1
(1

Low - No tasking; essentially batch response

Nominal - Interactive with limited Ada tasking

High - Interrupt driven with tasking in milliseconds

Very high - Concurrent tasking with rendezvous in milliseconds
Extra high - Concurrent tasking with rendezvous in nanoseconds

(SoftCost-Ada: Degree of Real-Time)

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

3. Reliability

a. Effect of a software failure

Moderate loss
Major financial loss

[] Inconvenience [
[x] Easily-recoverable loss [
[] Loss of human life

[ER———

(Ada COCOMO: Required Software Reliability)

4, Interfaces

a. Man-machine Interaction. Address the level of man interaction inherent in the system.
[] Extensive and complex interactive type system
[x] Highly interactive system
(] Small level of interaction with system - system operates mostly in an autonomous fashion
(] System is almost fully autonomous

(SASET: Man Interaction)

b. Software Interface Complexity:

How many other software systems and peripheral communications equipment with various
protocols and baud rates does this software system interface with? _8

{Note: Counted as 6 HWCI standard peripherals (disk, console, tape, printer, LAN, voice system) plus (1)
IOS indicators and controls and (1) Trainee Station indicators and controls.)

(SASET: Software Interfaces)

S. Software Testability

[1 Very difficult
[x] Difficult

Time intensive
Easy

ey p—
et St

(SASET: Software Testability)

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

6. Reused Code

a. Select the intended use of the majority of the software packaged for reuse:

(1 Not for reuse elsewhere

[] Reuse within single-mission products
(x] Reuse across single product line

1 Reuse in any application

(Ada COCOMO: Required Reusability)

b. Reuse Costs

[x] Low - No reuse library. Limited packaging for future reuse
[} Nominal - Reuse library employed. Less than 10% of software being packaged for reuse.
[] High - Reuse litrary being populated. Less than 20% of software being packaged for

future r~ .0
[] Verv Hizh - Reuse library exploited. More than 20% of software being packaged for

futur. .cuse.

(SoftCost-Ada: Reuse Costs)

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

1. Milestones

a. Schedule

Expected Actual

Milestone Date Date

Project Start Date 12/ 1/87 12/ 1/87
System Requirements Review 1/ /88 1/20/88
Software Specification Review 4/ /88 4/27/88
System Design Review N/A N/A
System Hardware PDR N/A N/A
System Software PDR 9/ /88 10/ 4/88
System Software CDR 3/ /89 7/24/89
Test Readiness Review 11/ /89 3/ 91
Functional Configuration Audit Yy /90 3/ 91
Physical Configuration Audit 2/ /90 3/ 91
Formal Qualification Review 2/ /90 N/A
Operational Test and Evaluation 3/ 90 4/ 91
Project Completion Date 3/ /90 9/ 91

(Note: The original milestone schedule shown under the expected date column was specified in the RFP.
Difference between the expected and actual dates may have been caused by two major contract
modifications: one for the ACS and one regarding the use of the Navy device TH-11.

There were two CDRs held. The first CDR held on 7/24/89 was for the real-time CSCI plus DCE and
target computer diagnostics. The second CDR held on 11/28/89 was for the ACS CSC.

Because of differences in terminology between contract performance milestones and the terminology noted
above, the following assumptions were made to designate expected dates:

L

2

Government Final Inspection Complete in the CDRL coincides with Formal Qualification Review.

The dates for the Reliability Test and Maintainability Demo in the CDRL coincides with Operational
Test and Evaluation

Functional Configuration Audit {at Ft. Rucker} is scheduled 60 days prior to Project completion
date (Scheduled Governnient Acceptance).

Physical Configuration Audit is conducted {ar Ft. Rucker} at the beginning of Government Final
Inspection.)

Project completion date coincides with the end of Government Final Inspection at the first training
site in Los Alimitos, CA. Government Final Inspection of the ACS was conducted at Ft. Rucker
during 1/92.

(SASET: Schedulej

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

b. Percent of development schedule devoted for Preliminary Design phase
(1 40 (1 33 (] 25 [1 17 [x] 10 [] 5
(Note: Five months out of 41, 12 %, were spent on preliminary design.)

(Ada COCOMO X Factor: Risk Elimination By PDR)

(Ada COCOMO X Factor: Design Thoroughness By PDR)

2. Development Standards

a. Check all types of standard used in this development:

None

Ada Programming Stapdards
Commercial

IEEE

Military

Other

(e oy Py (e
et W et Nt St it

(SoftCost-Ada: Degree of Standardization)

b. List the name(s) of these standard(s): MIL-STD-2167, MIL-STD-2167A (for SDD only)

(SASET: Software Documentation)
c. Were these standards taiiored specifically for use on this effort?
[] Yes x] No

(SoftCost-Ada: Degree of Standardization)
(SASET: Software Documentation)

d. List the name(s) of the software documents required: _SDP, SRS, STP, SDD, MMR,
TTPRR, CSOM (Computer Systems Operator’s Manual), VDD, CRISD, SPS

(SASET: Software Documentation)

3. Risk Management

a. Number and criticality of risk items

[x] <5, Noncritical

A-8

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

> 5, Noncritical
1, Critical

2-4, Critical
5-10, Critical

> 10, Critical

o ra— pima oy

(Ada COCOMO X Facror: Risk Elimination By PDR; not required by COSTMODL)

b, Risk Management Plan identifies all critical risk items, establishes milestones for resolving
them by PDR

Fully
Mostly
Generally
Some
Little
None

Iy)y e prma—y

>
—

(Ada COCOMO £ Factor: Risk Elimination By PDR)
C. Schedule, budget, and internal milestones through PDR compatible with Risk Management Plan

Fully
Mostly
Generally
Some
Little
None

[p— e p— f— f—

X

Mt

{Ada COCOMO X Factor: Risk Elimination By PDR)
(Ada COCOMO X Factor: Design Thoroughness By PDR)

d. Tool support available for resolving risk items

Full
Strong
Good
Some
Little
None

Py iy o gy g
———

(Ada COCOMO Z Factor: Risk Elimination By PDR)

4. Software Reviews

a. Select all informal reviews held on the software during this development:

A-9

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

1] None
(x] Quality inspections/audits
[x] Design walkthroughs

[x] Design inspections

[x] Code walkthroughs

[x] Code inspections

[] Other

(SoftCost-Ada: Use of Peer Reviews)

b.

Select all management reviews held on the software for this project:

[] None
{x] Monthly project reviews
[x] Weekly status reviews

(1 Other

(SoftCost-Ada: Use of Peer Reviews)

s System/Softwarc Requirements

Select the option which corresponds to the level of definition and understanding of system
requirements:

(] Very little definition and understanding of system requirements

[] Questionable definition and understanding of system requirements
[x] Fairly complete definition and understanding of system requirements
1] Very complete definition and understanding of system requirements

{SASET: System Requirements)

b,

Select the option which corresponds to the level of definition and understanding of software
requirements:

(1 Very little definition and understanding of software requirements

{1 Questionable definition and understanding of software requirements
[x] Fairly complete definition and understanding of software requirements
(] Very complete definition and understanding of software requirements

(SASET: Software Requirements)

C.

How will overall technology changes impact the project?
] During the development, the requirements will change more than once to upgrade the

system, due to significant improvements in technology
[1] During the development, there will be at least one (but less than three) significant

A-10

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

modifications to the system due to technology upgrades
ix] During the development there will be some minor modifications due to technology

upgrades
[] There will be no changes to the system or requirements during the development effort.

(Note: The target computer changed from MC68020 to MC68030. The toolset is constantly evolving.)

(SASET: Technology Impacts)

d. Select the percentage of software requirements well established:
[1>90% x] >60% [] >50% (] >30% []<30%

(SoftCost-Ada: Requirements Volarility)

e. System requirements baselined, under rigorous change control

Fully
Mostly
Generally
Some
Little
None

[x

[nan

[
[
[
[
{

(Ada COCOMO X Factor: Requirements Volatility)

f. Level of uncertainty in key requirements areas: mission, user interface, hardware, other
interfaces

Very little
Little

Some
Considerable
Significant
Extreme

o p— oy e i, s,
fad

(Ada COCOMO Z Factor: Requirements Volanlity)
g Organizational track record in keeping requirements stable

Excellent
Strong
Good
Moderate
Weak

Very Weak

— o o —
et et et s D

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

6.

(Ada COCOMO X Factor: Requirements Volatility)

h.

Use of incremental development to stabilize requirements

Full
Strong
Good
Some
Little
None

P

fr——y et pro— o
[y

(Ada COCOMO Z Factor: Requirements Volatility)

System archi‘ecture modularized around major sources of change

Fully
Mostly
Generally
Some
Little
None

D e e

{
[
(
[
[
(

[ENSy St

{Ada COCOMO X Factor: Reguirements Volatility)

j

Level of uncertainty in key architecture drivers: mission, user interface, hardware, COTS,
technology, performance

Very Little
Little

Some
Considerable
Significant
Extreme

s P

(Ada COCOMO Z Factor: Design Thoroughness By PDR)

Commercial off-the-shelf software (COTS)

Select the option which best describes the expected impact of integrating commercial off-the-
shelf software into the system:

{] There will be many impacts on the design/development effort to ensure that the vendor
supplied COTS software will interface correctly with the developed operational software.
{x] There will be some impacts on the design/development effort 10 ensure that the vendor
supplied COTS software will interface correctly with the developed operational software.
[] There will be few impacts created by the COTS software packages to support the

A-12

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

operating environment of the applications software.
(] There will be no impacts caused by the purchased software as the purchased software

only performs an operating environment support function (i.e., operating system).

(SASET: COTS Software)

Use of Software Tools

a. Specify the type of environment that will be used to develop the software:

[] Basic Ada language tools [x] MAPSE, plus access to host tools
[] MAPSE, plus access to host/target tools
[1 Full, life cycle APSE [] APSE

(Note: Tools include compiler, library manager, editor, linker/loader, CCC, Harvard Project Manager)

(SASET: Software Development Tools)
(SoftCost-Ada: Use of Software Tools/Environment)

b. Specify the type of tools that will be used to develop the software:

Basic microprocessor tools

Basic minicomputer tools

Strong mini, Basic maxicomputer tools
Strong maxi, MAPSE

Advanced maxi, APSE

>
(R o Sy p—

(Ada COCOMO: Use of Software Tools)
. Tool support for developing and verifying Ada package specs

Full
Strong
Good
Some
Little
None

—) o
—_—— P e

(Ada COCOMO X Factor: Design Thoroughness By PDR)

Use of Modern Programming Practices

a. Degree to which modern programming practices are used in developing software:
(1] No use
[] Beginning

[x] Reasonably experienced in some

A-13

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

1] Reasonably experienced in most
(1 Routine use of all

(Ada COCOMO: Use of Modern Programming Practices)
(Ada COCOMO Z Factor for Maintenance Model: Use of MPPs)

b. Ada Development Methodology

Structured programming
Obiject-oriented design plus structured programming

Ada packaging methods
Integrated life-cycle methodology which exploits Ada reusability concepts

Other

o——u—-\r—ur;r—-
U RO i —)

(SoftCost-Ada: Use of Modem Software Methods)

C. Maintenance Conformance to the Ada Process Model
1] Full
(] General
[x] Often
(Some
[
[

et Mt et

(Ada COCOMO Z Factror for Maintenance Model: Conformance)

Little
None

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

1. Size Estimates

a.

Number of CSCIs: 2

(SASET: Number of CPClIs)

b. Identify counting convention which is used to provide requested sizing information in (c).
[] Physical lines [] Non-comment, non-blank lines
[x} Terminal semicolons [l Essential semicolons
[x] Body semicolons
[] Other
c Enter the requested sizing information below, in thousands of lines of source code (KSLOCs).

UH-1 FS Source Code: By Terminal Semicolons

Deliverables Language New Reused/ Reused/ Software |
Program Modified Unmodified Type
[0S CsC Ada 11188 483 Application

Trainee Station Ada 11556 933 Application
CSC
ACS CSC Ada 6386 137 Application
Ada 1701 72 Support
Ada 2892 3267 | Application
Common Code Ada 15 82
DCL 469 115 Support
Assembly 6545
DCE Diagnostics Ada 6804 530 Support
Target Computer Ada 604 457 Support
Diagnostics
Daily Readiness Ada 908 279 Support
TOTAL 49,068.00 3,088.00 3,267.00 §5,423.00
A-15

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

UH-1 FS Source Code: By Body Semicolons

Deliverables Language New Reused/ Reused/ Software
Program Modified Unmodified Type
MJ
Trainee Station Ada 17789 933 Application

CcsC
ACS CSC Ada 9763 137 Application
Ada 1787 72 Support
Ada 15642 9997 | Application
Common Code Ada 15 82
DCL 469 115 Support
Assembly 6545
DCE Diagnostics Ada 6804 677 Support
Target Computer Ada 3017 544 Support
Diagnostics
Daily Readiness Ada 908 345 Support
TOTAL 77,765.00 3,475.00 9,997.00 91,237.00

(SoftCost-Ada: Ada Usage Factor)

(SoftCost-Ada: New, Reused, Modified Ada Components)
(SoftCost-Ada: New, Reused, Modified Other Components)
(SASET: Primary Software Language)

(SASET: Programing Language)

(SASET: Direct Input for SLOC)

d. Reused software: 11 %

——

(SoftCost-Ada: Reuse Benefits)

e. Number of delivered source instructions adapted from existing software to form the new
product: __13.47 KSL.OC

% of adapted software’s design modified in order to adapt it to new environment: 10 %

% of adapted software’s code modified in order to adapt it to new environment: 30 %

A-16

-‘---------

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

% of effort required to integrate the adapted software into the new product and to test the
resulting product as compared to the normal amount of integration and test effort for software

of comparable size: 10 %

({Ada COCOMO: Adapred Code)

2. Database Size

a. Database size (in bytes or characters as percentage of total program size): _5_ %

{Ada COCOMO: Database Size)
(SoftCost-Ada: Darabase Size)

A-17

PROJECT QUESTIONNAIRE

PROJECT STAFFING

1. Staff Size/Availability
a. Staff availability: 45 %
(SoftCost-Ada: Staff Resource Availability)
b. Percent of required top software architects available to project
[} 120 [} 100 [] 8 [x 6 [] 4 ([} 2

{Ada COCOMO X Factor: Risk Elimination By PDR)
(Ada COCOMO X Factor: Design Thoroughness BY PDR)

c. Difficulty of staffing due to special training and clearances:

(] Staffing of the project will be difficult because of special training or security

requirements.

[] Initial staffing will be difficult because of special training or security requirements.

(x] Staffing of the project is projected to be fairly easy but there are some training
requirements.

(] Staffing will not pose any problem at all.

(SASET: Personnel Resources)

2. Staff Skill/Experience

a. Skill Level of Analysts

[JBottom 15% [] 35% [] 55% [x| 75% [] Top9%0%

(Ada COCOMO: Analyst Capability)
(SoftCost-Ada: Analyst Capability)

b. Skill Level of Programmers

[]Bottom 15% [] 5% [x] 55% (] 5% [Top 90%
{Ada COCOMO: Programmer Capability)
c Average experience with similar applications: _2__years, _0_ months

(Ada COCOMO: Applications Experience)
(SoftCost-Ada: Applications Experience)

d. Average level of virtual machine experience of the project team developing the software module:

A-18

PROJECT QUESTIONNAIRE

PROJECT STAFFING

2 years _0 months
(Ada COCOMO: Virtual Machine Experience)
e. Host Machine Expertise:

(] Inexperienced - completely new hosting hardware system

[x] Liule experience - mostly new hosting hardware system

[] Average experience - most of the hardware system has been utilized by members of the
development team before

(] Highly experience - extensive experience with hardware system

(SASET: Hardware Experience)
f. Software Language and Operating System Expertise:

] Completely new hosting operating system or software language

[x] Few people with experience with operating system and/or software language

[1 The software language and operating system have been utilized by the company before
[] Extensive experience with the software language and operating system

(SASET: Software Experience)

g Experience with chosen development methodology:
2_years _0 months

(SoftCost-Ada: Ada Methodology Experience)
h. Experience with Ada Process Model

Successful on > 1 mission critical project
Successful on 1 mission critical project
General familiarity with practices

Some familiarity with practices

Little familiarity with practices

No familiarity with practices

X

Nt

[
[
(
[
[
{

fa—

(Ada COCOMO: Experience with Ada Process Model)

i. Project team’s equivalent duration of experience (at the beginning on the project/build) with the
programming language to be used:

0 _vears _6 months

(Ada COCOMO: Programming Language Experience)
(SoftCost-Ada: Ada Language Experience)

PROJECT QUESTIONNAIRE
PROJECT STAFFING
e Number of Ada projects completed by team members: 0

(SoftCost-Ada: Number of Ada Projects Completed)
k. Ada environment experience:

[x] Less than 3 months of experience

[] Between 3 - 6 months of experience
[Between 6 - 12 months of experience
(] Over 1 year of experience

(SoftCost-Ada: Ada Environment Experience)
B Level of product familiarity of the development team:

{1 This application is a new project not in our current line of business
[] This application is a normal development project that is a part of our current line of

business

{x] This application is a familiar type of project having already been developed by the
company before or similar to other projects we have developed

[Many applications of this type have been developed by the company (greater than 7)

(SASET: Development Team)

3. Teamwork Capability

a, Select the type of team used for software development:

[] Design teams Il Programming teams
{x] [nterdisciplinary teams {1 Participatory teams
(] Not used

(SoftCost-Ada: Team Capability)

A-20

-u-------—-.

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

1. Development Environment

a. Number of different types of workstations: 2 (0 to 100)
(SASET: Workstation Types)

b. Rate the virtual machine volatility of the development system, based on frequency of
major/minor changes:
X 12 months (major) / 1 moath (minor)
6 months (major) / 2 weeks (minor)
2 months (major) / 1 week (minor)
2 weeks (major) / 2 days (minor)

r— p—— p— p—
et e bt

(Ada COCOMO: Virtual Machine Volatility - Host)
c. Select the following option that best assesses the embedded features of the development system:

[] Hardware is to be developed, but its completion will occur long before the software is
to be ready

1 Hardware is to be developed on the contract, it is to be developed concurrently with the
software and the hardware can/does have major impacts on the software

{1 Hardware is to be developed on the contract, it is to be developed concurrently with the
software but the hardware has little impact on the software

[x] No new hardware is to be developed under the effort; there will be no impact on the
software development

(SASET: Embedded Development System)
d. Rate the software tool/environment stability of the development system:

[1] Very Low - Buggy compiler. APSE change every 2 weeks.

[] Low - Stable but incapable compiler. APSE change every month. New tool rate 1 per
week.

[1 Nominal - Stable compiler. APSE change every 3 months. New tool rate 1 per quarter.

(1 High - Stable compiler. APSE change every 4 months. New tool rate 1 per month.

x] Very High - Stable compiler capable of tasking. APSE change every 6 months. New tool
rate 1 per quarter,

[} Extra High - Stable and fully capable compiler. APSE change ever 6 months. New tool
rate 1 per 6 months.

(SoftCost-Ada: Software Tool/Environment Stability)
e Address the difference between the development hardware system and the host system:

{1 Development computer significantly different than target computer, hardware emulation

A-21

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

or math modelling required for missing hardware of software.

[] Development computer different than target computer, some hardware emulation or
math modeling may be required for missing hardware or software.

[x] Some elements of the hardware/software development system are different from the target
system but no problems or modifications are foreseen.

(] Development and target hardware/software system are identical or are one in the same.

(SASET: Development Versus Host System)

2. Target Computer Configuration
a. Rate the virtual machine volatility of the target system, based on number of major/minor
changes:

X} 12 months (major) /‘1 month (minor)
1 6 months (major) / 2 weeks (minor)

1 2 months (major) / 1 week (minor)

] 2 weeks (major) / 2 days (minor)

(Ada COCOMO: Virmal Machine Volatility-Target)
b. Identify the system architecture:

Centralized (single processor)

Tightly-coupled (multiple processor)

Loosely-coupled (multiple processor)

Federated (Functional processors communicating via a bus)
Distributed (centralized database)

Distributed (distributed database)

[
[
[

.

[
[
{

Number of processors: _6

(SoftCost-Ada: System Architecture)
(SASET: Hardware System Type)

3. Performance Requirements
a. Main Storage Constraint: < 50 %

(Ada COCOMO: Main Storage Constraint)
(SASET: Percent of Core Utilized)

b. Overall Hardware Constraints. Overall hardware refers to processor memory, I/O capacity, and
throughput (i.e. CPU speed) available within the iarget computer system.

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

Close to 100% utilization

Difficult hardware capacity limitations (85% to 95%)
Average hardware capacity limitations (75% to 85%)
Minimal hardware capacity limitations (50% to 75%)

X Less than 50% of available processor resources

(Lol Sy Tp—

(SASET - Hardware Constraints)
(SoftCost-Ada: Degree of Optimization)

c Execution Time Constraints. Select the percentage which best reflects the percentage of availabie
execution time expected to be used by the subsystem and any other subsystems consuming the
execution time resource.

[x] at most 50% []70% [185% [195%

(Ada COCOMO: Execution Time Constraint)

d. Select the criteria which reflects the performance constraints of the software system:
1] Mission critical, error free or very difficult response times (real-time software)
[x] High reliability or difficult response times
[Average reliability (non real-time software)

{1 Non-critical software with no tight performance requirements

(SASET: Timing and Criticality)

4. Microprocessor Code

a. Percentage of software functions that are to be implemented in firmware: < 5 %
(Note: Bootstrap and downloading functions were partially implemented in firmware.)

(SASET: Percentage of Microprocessor Code)

A-23

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

Project Organization

a. Number of organizations within the company significantly involved during the software
development: _5

(SoftCost-Ada: Number of Organizations)
b. Scope of Support

Low - No support to non-software organizations

Nominal - Liaison support to non-software organizations

High - Extensive support to system test organizations

Very High - Extensive support to system engineering and test organizations.
CSSR/CSCSC reporting requirements.

{x

(
(
[

[A

{SoftCost-Ada: Scope of Support)
c. Organizational Interface Complexity

Single costumer collocated with developer

Single customer, single interface

Multiple internal interface, single external interface
Multiple internal and external interfaces

Mutltiple interfaces, geographically distributed

(SoftCost-Ada: Organizational Interface Complexity)

d. Number of locations at which software is developed (from 1 to 100): __1
(SASET: Development Locations)

e. Number of customer locations: 5

{Note: NTSC, FL; Ft. Rucker, AL; AVSCOM, St. Louis; Peoria, IL; and Los Alamitos, CA)

(SASET: Customer Locations)
(SASET: Information Travel Requirements)

Computer Resources

a. Characterize the development facilities and the perceived availability of the hardware (terminals
and computers):

[] Development will be restricted due to hardware unavailability caused by high utilization

or special hardware needs.
[] Development is to occur on shared hardware that has varied utilization but generally

A-24

----------J

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

utilization is high (hardware shared by more than one project)

[] Development is to occur on hardware shared between a small group of projects:
hardware availability is generally good.

[x] Development is to occur on hardware dedicated to the project and hardware availability

is excellent
(SASET: Development Facilities)
b. Computer resource availability

Extreme equipment and facility limitations

Computer shared or remotely accessible

Interactive access to dedicated computer resources

Dedicated facilities with multiple LAN-servers/worker

Software factory with multiple LAN-servers and specialized Ada machines

[
—-u,ﬁ,._au

(SoftCost-Ada: Computer Resource Availability)

c. Select the average time required to submit a job to be run until the results are back in the
developer’s hand:

{x] Interactive, 1 terminal/person [] Interactive, .3 terminal/person
[] <4hours [] 4-12hours [] > 12 hours
(Ada COCOMO: Cornputer Turnaround Time)

Security and Privacy Restrictions

a. Classified Application:

{x} Unclassified
[1] Classified (Secret, Top Secret)

(Ada COCOMO: Classified Security Application)
b. Security Requirements

None

Database integrity/privacy considerations

Physical security with access controls

Demonstrably correct trusted system. Physical security with access controls.
Verifiably correct trusted system. Physical security with access controls.

>
-_—

O
et et e ek

(SoftCost-Ada: Security Requirement)

A-25

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

c. Internal Computer System Security Safeguards

r—— —
—_——— X

[l
[
[l

None

Security policy well defined and enforced

Marking - Access control labels are associated with ail data

Identification - Access is based on who is accessing and the levels of information that the
subject is authorized to access.

Accountability - Audit information is kept and protected. Actions affecting security can
be traced to responsible party

Assurance - System contains trusted mechanisms that are independently evaluated to
provide assurance that the system is accountable

Continuous - The mechanisms that provide assurance are continuously protected against
tampering and unauthorized changes

(SASET: Software Security)

RESOURCE ALLOCATION

1. Effort

a.

Total Staff: 247.5 (staff months effort end-to-end based on 152 hours/staff month)

PROJECT QUESTIONNAIRE

b. Minimum Staff Size: __
c For each software activity, please provide the total effort, by phase, in staff-months it took to
complete.
Phase WBS # WBS Task WBS # WBS Task Hours
Primary Primary Secondary Secondary Used
[2171 Real Time 0000 Sys Requirements 99.50
1000 S/W Requirements 677.00
2000 Top-Level Design 427.00
2172 Non-Real Time 0000 Sys Requirements 37.00
1000 S/W Requirements 211.00
2000 Top-Level Design 531.50
ECP - ACS (6) 9006 8.00
2311 Phase I Eng Data 1,177.00
2235 Reviews 118.00
2191 Benchmark Testing 308.00
2211 Sys Engineering 2,465.00
2234 Quality Assurance 28.00
Total Hrs Phase I 6,087.00
Phase WBS # WBS Task WBS # WBS Task Hours
Primary Primary Secondary Secondary Used
II 2451 Real Time 3000 Detailed Design 2,799.50
9006 4.00
2452 Non-Real Time 3000 Detailed Design 2,713.50
9006 59.50
2510, 2573 Engineering Data 724.50
2485 Reviews 150.00
2613 Benchmark Testing 660.00
2563 Phase II Eng Data 1,550.00
2900 ECP (3-6) 0000 32.00
2900 ECP (3-6) 2451 24.00
2900 ECP (3-6) 2452 231.00
2900 ECP (3-6) 2510 2.00
2484 Quality Assurance 403.00

RESOURCE ALLOCATION

PROJECT QUESTIONNAIRE

Total Hrs Phase 11 9,353.00
Phase WBS # WBS Task WBS # WBS Task Hours
Primary Primary Secondary Secondary Used
m 2761 Real Time 4000 Implementation 1,011.90
5000 CSC Testing 4,940.00
2752 Non-Real Time 4000 Implementation 1,086.80
5000 CSC Testing 4,633.20
2751 In House Dev/Test 7,651.20
2753 On Site Install & Integ 154.00
2754 Final Test 677.80
2757 Config Audit 48.00
2780 Reviews & Conf 102.00
2563 Phase 111 Eng Data 1,102.00
2779 Quality Assurance 430.00
2777 S/W Config Mgmt 350.00
Total Hrs Phase III 22,186.90
Total All Phases 37,626.90
d. Average No. of Hours per Staff Month: 151 (default = 152 hours).

APPENDIX B

INSTRUCTIONS FOR

SOFTWARE PROJECT DATA COLLECTION FORMS

PROJECT QUESTIONNAIRE

GENERAL INFORMATIGN

1. Your Name and Date

Identify the person completing the questionnaire and the date that the form is being completed.

2. Title and Phone

Enter the title of the person completing the questionnaire and the number at which they can be reached.

3. Organization and Address

Identify the company or organization of the person completing this form.

4. Name of Project

Enter the name of the project for which the software is being developed.

5. Contract Number

If the software is developed under govemment contract, enter the prime contract number.

6. Customer Name

Enter the name of the organization for whom the software is being developed.

7. Project Overview Description

Describe the overall mission or purpose of the system for which the software is being developed.

8. Developer Contact and Phone

Enter a point of contact of the company or organization which is actually performing tne software development
and the number at which they can be reached.

9. Customer Contact and Phone
Enter a customer point of contact and the number at which they can be reached.
10. Current Status

Enter whether the project is completed or ongoing. If ongoing, indicate the most recently completed project
milestone.

PROJECT QUESTIONNAIRE

PRODUCT DESCRIPTION

Systemy/Software Characteristics

a. Operating Environment:

(SASET: Class of Software)
Select the operating environment of the target system.

b. Applications domain
(SoftCost-Ada: Type of Software)
Select the appropriate software application domain for the project. The following types of systems

can be designated:

Automation - The software will be used in process control systems, such as those used for
environmental control in a manufacturing plant.

Avionics - The software will be used in avionics and other embedded systems, such as those used
to control complex, real-time radars and guidance and control systems.

Command & Control - The software will be used in command and control systems, such as air
traffic control systems.

Data Processing - The sofiware will be used in traditional data processing systems, such as
management information systems, payroll, accounting, time cards, eic.

Environment/Tools - The software will be used in software development tool systems, such as
compilers, CASE, and integrated software engineering environments.

Scientific - The software will be used in scientific applications, such as seismic processing or weather
mapping.

Simulation - The software will be used in simulation systems, such as aircraft flight simulators.

Telecommunications - The software will be used in telecommunications systems, such as digital
switches or PABX's.

Test - The software will be used in test systems, such as those used to monitor the performance
application software.

Other - Other types of applications not included in those listed above.
Complexii
a. Rate the difficulty of the processing logic

(SoftCost-Ada: Product Complexity)
The following explanations are offered to assist with rating selections:

B-3

PROJECT QUESTIONNAIRE

PRODUCT DESCRIPTION

Strait line code, standard types - The software will perform very basic functions using Ada’s standard
types. It will use basic math operations and will not use Ada’s tasking conventions. An example
of software with this amount of complexity is a screen generator or report writer.

Simple functions, standard types - The software will perform a basic set of functions using standard
ypes, basic math operations, and no tasking. It may include some data manipulation routines and
library calls. An example of software with this complexity level is a simple device driver or file
management routine.

Strait forward logic, generics and simple tasking - The software will perform a set of functions using
straightforward logic and 1/O processing. It uses simple tasking primitives and generates/uses some generics.
An example is scientific software used to compute the radius of an ellipsoid in three dimensions.

Highly nested logic, numeric types, concurrent tasking - The software will perform some real-time functions.
It will be logically complex with complicated 1/O structures and highly nested logic. It will generate and use
packages and generics from a reuse library. It will also make use of Ada’s numeric types and will handle
multiple tasks executing concurrently. An example is an exception handler.

Stochastic logic, unique type, rendezvous - The software will perform real-time functions which have
significant interface and interaction requirements. It will employ sophisticated math functions, user defined
yypes, a reuse library and Ada's rendezvous facility for task synchronization. An example is a scheduler or
simple control system.

Dynamic resource allocation, unique types, rendezvous - The software will perform real-time functions, like
signal processing, which have extremely complex interfaces, control logic and time-dependent processing
needs. It performs very difficulr, unstructured numerical analysis funcrions, makes use of user defined types,
incorporates very specialized libraries of package and generic units and contains very complicated exception
handling provisions. Most military avionics and command and control systems fit this category.

b. The complexity of this CSCI is best characterized by which of the following statements?:

(Ada COCOMO: Software Product Complexity)
Select the statement which best characterizes the complexity of your application.

C. Degree of Real-time

{SoftCost-Ada: Degree of Real-Time)
The following explanations are offered to assist with ratings selections:

Essentially batch response - The software will perform in batch mode with no interactive or real-time
response requirements.

Interactive with limited Ada tasking - The software will perform in an interactive mode, with a limited
amount of Ada tasking.

Interrupt driven with millisecond tasking - The software will perform in a real-time mode, be interrupt driven
and able to handle task communication in the millisecond time range.

B-4

PROJECT QUESTIONNAIRE

PRODUCT DESCRIPTION

Concurrent tasking with millisecond rendezvous - The software will perform in a real-time mode, support
concurrent tasking and be able 1o support rendezvous which occur in the millisecond time range.

Concurrent tasking with nanosecond rendezvous - The software will perform in a real-time mode, support
concurrent tasking and be able 1o support rendezvous which occur in the nanosecond time range.

3. Reliabili

a. Effect of a software failure

(Ada COCOMO: Required Sofrware Reliability)
The following explanations are offered to assist with rating selections:

Inconvenience - The effect of a software failure is simply the inconvenience incumbent on the developers to
fix the fault. Typical examples are a demonstration prototype of a voice typewriter or an early feasibility-
phase software simulation model.

Easily-Recoverable Loss - The effect of a software failure is a low level, easily-recoverable loss to users.
Typical examples are a long-range planning model or a climate forecasting model.

Moderate loss - The effect of a software failure is a moderate loss to users, but a situation from which one
can recover without extreme penalty. Typical examples are management information systems or inventory
control systems.

Major financial loss - The effect of a software failure can be a major financial loss or a massive human
inconvenience. Typical examples are banking systems and electric power distribution systems.

Loss of human life - The effect of a software failure can be the loss of human of life. Examples are military
command and conirol systems or nuclear reactor conirol systems.

4. Interfaces
a. Man-machine Interaction

(SASET: Man Interaction)

Address the level of man interaction inherent in the system. The more extensive man interactive systems
are generally more expensive and take longer to build due to special input and error detection and correction
functions that are needed.

b. Software Interface Complexity
(SASET: Software Interfaces)

Enter the number of software systems and peripheral communications equipment with various protocols and
baud rates that this software system will interface with?

PROJECT QUESTIONNAIRE

PRODUCT DESCRIPTION
s. Software Testability

(SASET: Software Testability)
Systems possessing performance operations that are difficult 10 test are generally more expensive and take
longer to build due to added complexity of the testing phase.

Very difficult softiware system to test - long running programs with extensive logical paths to check.
Difficult software system to test - long running programs with many logical paths ro check
Time intensive program - requires extensive testing but will not have a high degree of difficulty

Program is easy to test - small number of items to test

Reused Code
a. Select the intended use of the majority of the software packaged for reuse

(Ada COCOMO: Required Reusability)
The ranng selected should reflect added design, documentation, and more extensive testing associated with
developing reusable Ada components.

b. Reuse Costs

(SoftCost-Ada: Reuse Costs)
The following explanations are offered to assist with ratings selection:

No reuse library - Neither a reuse library nor a set of technical guidelines have been established by the firm.
The costs of establishing the reuse infrastructure will be borne by the project.

Reuse library employed - A reuse library has been established for managing reusable artifacts. The library
is not well populated and technical guidelines for packaging, quality assurance, and configuration
management of reusable components are under development. The costs associated with trial use and
refinement of the infrastructure will be borne by the project.

Reuse library being populated - A reuse library has been established and is current being populated.
Technical and managerial guidelines for reuse have been published. The costs associated with use of the
infrastructure will be borne partially by the project and possibly a process group as the library is being
populated.

Reuse library being exploited - A reuse library has been established and populated, and is being exploited
on the project. Technical guidelines for reuse have been published and people have been trained in their
use. The costs associated with use of the infrastructure will be borme by the project as will their
proportionate share of the costs associated with operating the library.

1.

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

Milestones
a. Schedule

(SASET: Schedule)

Enter the expected and actual dates for each milestone, or N/A if the milestone does not apply to this
project. Several CSCIs may be involved and they do not necessarily need to adhere to the same schedule.
If an expected date is an estimated date rather than a contract date, put an asterisk after that date. The
format for software development schedule date is (Month/Year).

b. Percent of development schedule devoted for Preliminary Design phase

{Ada COCOMO Z Factor: Risk Elimination By PDR)

(Ada COCOMO ZX Factor: Design Thoroughness By PDR)

Select the percentage that most closely approximates the percentage of time devoted to the prelimary design
phase based on a total time starting with Sofiware Specification Review and ending with Formal
Qualification Review.

Development Standards

a. Check all types of standard used in this development

(SoftCost-Ada: Degree of Standardization)
The following explanations are offered to assist with rating selections:

None - No software development standards are available or will be used on the project.

Ada Programming Standards - The project will use a set of Ada programming standards that apply primarily
to the coding of Ada software.

Commercial Life Cycle Standards - The project will use commercially developed (IEEE Standards, etc.) or
company developed and client approved standards that apply to the design, development, and documentation
of the Ada software.

Military Standards - The project will used a set of military standards on the project. Military standards
typically employed include DOD-STD-2167, DOD-STD-2167A and DOD-STD-2168.

b. List the name(s) of these standard(s)
(SASET: Software Documentation)
c. Were these standards tailored specifically for use on this effort?

(SoftCost-Ada: Degree of Standardization)
(SASET: Software Documentation)

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

Untailored standards means that the project will be forced 10 design, develop, and document software by
the book. No waivers or deviations to the standards will be allowed.

d. List the name(s) of the software documents required

(SASET: Software Documentation)

3. Risk Management

a. Number and criticality of risk items
(Ada COCOMO X Factor: Risk Elimination By PDR; not required by COSTMODL)

b. Risk Management Plan identifies all critical risk items, establishes milestones for resolving
them by PDR

(Ada COCOMO X Factor: Risk Elimination By PDR)
c. Schedule, budget, and internal milestones through PDR compatible with Risk Management Plan

(Ada COCOMO Z Factor: Risk Elimination By PDR)
(Ada COCOMO X Factor: Design Thoroughness By PDR)

d. Tool support available for resolving risk items

(Ada COCOMO Z Factor: Risk Elimination By PDR)

Software Reviews

a. Select all informal reviews held on the software during this development

(SoftCost-Ada: Use of Peer Reviews)
The following explanations are offered to assist with rating selections:

Quality Inspections/Audits - The project will have quality assurance independently inspect/audit the software
designs and code to ensure that they meet standards.

Design and code walkthroughs - The project will have software team members review each others’ designs
and code using the concept of walkthroughs. Walkthroughs are informal meetings where team members
review work and suggest ways to improve it. Walkthroughs are used to improve the quality of the product.

Design and code inspections - The project will have software team member review each others’ designs and

code using the concept of inspections. Inspections have the same objectives as walkthroughs, but tend to
be more formal. They are moderated (often by quality assurance) and feed-forward and feed-back the

B-8

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

results of the review so that their lessons learned can be propagated throughout the project.
b. Select all management reviews held on the software for this project
(SoftCost-Ada: Use of Peer Reviews)

Management Reviews - Peer management reviews are employed to build the management team and to have
them help each other to solve problems and to manage risk.

S. System/Software Requirements

a. Select the option which corresponds to the level of definition and understanding of system
requirements

(SASET: System Requirements)

b. Select the option which corresponds to the level of definition and understanding of software
requirements

(SASET: Software Requirements)

c How will overall technology changes impact the project?
(SASET: Technology Impacts)

d. Select the percentage of software requirements well established

(SoftCost-Ada: Requirements Volanlity)
The following explanations are offered to assist with ratings selections:

Essentially no changes (>90%) - The software requirements are well defined and will change very little
during the course of the development. Requirements changes will be infrequent and under change control.

Over 60% of requirements are well established - More than 60% of the software requirements are well
established and will change slightly during the course of development. The remaining requirements will be
defined and placed under control by SSR. Requirements changes will be infrequent and under change
control.

Over 50% of requirements are well established - Between 50% and 60% of the software requirements are
well established and will change during the course of development. The remaining requirements will be
defined and placed under change control by SSR. Requirements changes will be frequent, bu: under change
control.

Over 30% of requirements are well established - Between 30% and 50% of the software requirements are

well established and will change during the course of development. The remaining requirements will be
defined and placed under change control between SSR and PDR. Requirements changes will occur

B-9

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

frequently and will result in moderate to heavy rework. Change control will be implemented, but will be
heavily taxed 10 keep up with the requirenients changes.

Less than 30% of requirements are well established - Between 0% and 30% of the software requirements are
well established and will change during the course of development. The remaining requirements will be
defined and placed under change control by PDR. Changes to requirements will occur fairly frequently and

will require extensive rework. Change control will be implemented, but will be taxed 10 keep up with the
requirements changes. Some thrashing will occur as products have to be reworked to accommodate

requirements growih.
e. System requirements baselined, under rigorous change control

(Ada COCOMO £ Factor: Requirements Volatility)

f. Level of uncertainty in key requirements areas: mission, user interface, hardware, other
interfaces

(Ada COCOMO X Factor: Requirements Volatility)

g Organizational track record in keeping requirements stable

{Ada COCOMO X Factor: Requirements Volatility)

h. Use of incremental development to stabilize requirements

(Ada COCOMO X Factor: Requirements Volatility)

i. System architecture modularized around major sources of change
(Ada COCOMO X Factor: Requiremenis Volatility)

- Level of uncertainty in key architecture drivers: mission, user interface, hardware, COTS,
technology, performance

{Ada COCOMO X Factor: Design Thoroughness By PDR)

Commercial off-the-shelf software (COTS)

a. Select the option which best describes the expected impact of integrating commercial off-the-
shelf software into the system

(SASET: COTS Sofrware)

Use of Software Tools

B-10

]

PROJECT QUESTIONNAIRE

DEVELOPMENT METHGDOLOGY

a. Specify the type of environment that will be used to develop the software

(SASET: Software Development Tools)
(SoftCost-Ada: Use of Software Tools/Environment)
The following explanations are offered to assist with rating selections:

Basic Ada Language Tools - The minimum set of Ada software development tools will be used by the
project. These tools tpically include a text editor, compiler, linker/loader, and debugger.

MAPSE Plus Host Tools - A Minimal Ada Program Support Environment (MAPSE) will be used by the
project which as host tools but no back-end target tools (i.e., no cross development tools). A MAPSE
integrates the following types of tools into a software development environment: command language
interpreter, text editor, compiler, debugger, linker/loader, static analyzer, dynamic analyzer, prenty-printer, file
manager, and library.

MAPSE Plus Host/Target Tools - A MAPSE will be used by the project which has both host and back-end
target tools. In addition to a standard MAPSE, this type of Ada programming environment provides cross-
development tools which allow software to be written on the host and downloaded to the rarget after
debugging has taken place.

APSE - An Ada Programming Support Environment (APSE) is richer in tools than a MAPSE because it
provides the following additional types of tools: documentation systems, configuration management systems,
project management systems, upper CASE and lower CASE tools.

Full, Integrated, Life Cycle APSE - An APSE which provides an integrated set of tools will be used on the
project. This type of environment provides tools which are integrated with each other and the methods
which they automate to provide a seamless system which can be used to support software development from
start to finish.

b. Specify the type of tools that will be used to develop the software

(Ada COCOMO: Use of Software Tools)
The following explanations are offered to assist with rating selections:

Basic microprocessor tools - Assembler, Basic linker, Basic monitor, Batch debug aids

Basic minicompuler tools - HOL compiler, Macro assembler, Simple overlay linker, Language independent
monitor, Batch source editor, Basic library aids, Basic database aids

Strong mini, Basic maxicomputer tools - Real-time or timesharing operating system, Database management
system, Extended overlay linker, Interactive debug aids, Simple programming support library, Interactive
source editor

Strong maxi, Stoneman MAPSE - Virtual memory operating system, Database design aid, Simple program

design language, Performance measurement and analysis aids, programming support library with basic CM
aids, Set-use anabzer, Program flow and test case analyzer, Basic text editor and manager

B-1I1

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

Advanced maxi, Stoneman APSE - Full programming support library with CM aids, Full integrated
documentation system, Project control system, requirements specification language and analyzer, Extended
design tools, Automated verification system, Special-purpose tools: Crosscompilers, instruction set
simulators, display formatters, communications processing tools, data entry control tools, conversion aids,
etc.

c. Tool support for developing and verifying Ada package specs
(Ada COCOMO X Factor: Design Thoroughness By PDR)

Use of Modern Programming Practices

a. Degree to which modern programming practices are used in developing software

(Ada COCOMO: Use of Modern Programming Practices)
{Ada COCOMO Z Factor for Maintenance Model: Use of MPPs)
The specific practices included here are:

L Top Down Requirements Analysis and Design. Developing the software requirements and design as
a sequence of hierarchical elaborations of the users' information processing needs and objectives.
This practice is extended to include the appropriate use of incremental development, prototyping, and
anticipatory documentation.

[3¥]

Structured Design Notation. Use of a modular, hierarchical design notation (program design
language, structure charts, HIPO) consistent with the structured code constructs in item 5.

3. Top Down Incremental Development. Performing detailed design, code, and integration a sequence
of hierarchical elaborations of the software structure.

4. Design and Code Walkthroughs or Inspections. Performing preplanned peer reviews of the detailed
design and of the code of each software unit.

5. Structured Code. Use of modular, hierarchical control structures based on a small number of
elementary control structures, each having only one flow of control in and out.

6. Program Librarian. A project participant responsible for operating an organized repository and
control system for software components.

b. Ada Development Methodology

{SoftCost-Ada: Use of Modern Software Methods)
The following explanations are offered to assist with ratings selections:

Structured Programming - The project will use traditional structure methods to analyze, design, develop, and

test the software (e.g., including structured analysis, structured design, top-down development, program
libraries, etc.)

B-12

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

Object Oriented Design Plus Structured Programming - A project will use a combinarion of structured
programming techniques and Object Oriented Design (OOD). OOD is a technigues whereby a system is
partitioned into object, not functions.

Ada Packaging Methods - The project will use Ada packaging methods based on object-oriented techniques
in which an object and its operations are located within a single package.

Integrated life-cycle methodology which exploits Ada reusability concepts - The project will use an integrated
set of object-oriented methods which enable its users to package the software to take full use of Ada’s
structural, behavioral, performance, tasking, and reuse features.

C. Maintenance Conformance to the Ada Process Model

(Ada COCOMO X Factor for Maintenance Model: Conformance)

B-13

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

1.

Size Estimates

a. Number of CSCls:

(SASET: Number of CPCls)

Computer software (program) configuration items (CSCIs) are identified early in the requirements phase
along with hardware configuration items (HWCls). Software CSCls are complete, stand-alone, well-defined,
and completely testable items.

b. Identify counting convention which is used to provide requested sizing information in (c).

Counting conventions are recommended for the following models:

Model Convention

Ada COCOMO Body semicolons
SoftCost-Ada Terminal semicolons
SASET Terminal semicolons

Definitions for an Ada source line of code are as follows:

Physical lines - Any carriage retum or line feed including comments and blank lines. Reusable code is
counted the first time it is instantiated.

Non-Comment, Non-Blank Lines - Physical lines excluding comments and blank lines.

Terminal Semicolons - A statement terminated by a semicolon, including data declarations, code used to
instantiate a reusable component, and the reusable component itself (the first fime it was instantiated).
Comments, blank lines, and non-deliverable code are not included in the line count.

Essential Semicolons - Terminal semicolons excluding those used in a data declararion or formal parameter
lists.

Body Semicolons - A statement terminated by a carriage return in the specification and a terminal semicolon
in the body of an Ada program. Comments, blank lines, and non-deliverable code are not included in the
line count.

c. Enter the requested sizing information below, in thousands of lines of source code (KSLOCs).

(SoftCost-Ada: Ada Usage Factor)

(SoftCost-Ada: New, Reused, Modified Ada Components)

{SoftCost-Ada: New, Reused, Modified Other Components)

(SASET: Primary Software Language)

(SASET: Programing Language)

(SASET: Direct Input for SLOC)

Specify deliverable program or CSC, Number of lines of code for each code condition, language, and
software type.

B-14

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

Software Type can be system, application, support, or security. The code condifions (new, modified,
rehosted) are briefly defines as follows:

New code - This constitutes software code that is to be developed from scratch. Software requirements must
be determined, a design established, the design must be coded and units tested, and the system integration
must be 1ested.

Modified code - This constitutes software code which has some development already complete and which
can be utilized in the software program under consideration. Inherited or legacy software are terms often
used for modified code. Generally, modified code at the very least needs to be retested and often some
redesign and recoding efforts are required.

Rehosted code - This consists of completed and tested software code which is to be transferred from one
computer system to another. The computer systems are functionally different to the point of requiring some
changes to existing code. Generally, the code requires no requirement definition, little or no design
definition, and partial testing.

d. Reused software

{SoftCost-Ada: Reuse Benefits)

Specify the amount of sofrware (design, code, tests, etc.) that will be incorporated into the project currently

being developed.

e Number of delivered source instructions adapted from existing software to form the new product
% of adapted software’s design modified in order to adapt it to new environment

% of adapted software’s code modified in order to adapt it to new environment

% of effort required to integrate the adapted software into the new product and to test the
resulting product as compared to the normal amount of integration and test effort for software
of comparable size

{Ada COCOMO: Adapted Code)

2. Database Size
a. Database size

(Ada COCOMO: Datrabase Size)

(SoftCost-Ada: Database Size)

Identify the relative size of the database represented as a percentage of the total program size. For example,
if the program is 10,000 source lines of code (delivered source instructions) and the database is less than
1,000 bytes, then the database is less than 10% of the program size. The percentage may exceed 100%.

B-15

PROJECT QUESTIONNAIRE

PROJECT STAFFING

1. Staff Size/Availability

a. Staff availability

(SoftCost-Ada: Staff Resource Availability)

Identify the availability of staff required by the project that are available when needed to perform software
development activities. The nominal rating for this parameter is between 30% and 50% availability.

b. Percent of required top software architects available to project

(Ada COCOMO X Factor: Risk Elimination By PDR)
(Ada COCOMO X Factor: Design Thoroughness BY PDR)

c. Difficulty of staffing due to special training and clearances

(SASET: Personnel Resources)

2. Staff Skill/Experience

a. Skill Level of Analysts

(Ada COCOMQO: Analyst Capability)

(SoftCost-Ada: Analyst Capability)

Lientify the relative capability of the analysts that will be used on the project. For example, a rating of the
bottom 15th percentile means that the analysts assigned to this project are, on average, ranked in the 15th
percentile of all analysts (ie., 85% of all analysts are better qualified). The major attributes to be
considered in the rating are:

. Analysis ability
Efficiency and thoroughness
Ability to communicate and cooperate.

These attributes should weight equally. The evaluation should not answer the level of experience of the
.. 1alysts. The evaluation should be based on the capability of the analysts as a team rather than as
i."dividuals.

b. Skill Level of Programmers

(Ada COCOMO: Programmer Capability)

Identify the relative capability of the programmers that will be used on the project. For example, a rating
of the bottom 15th perceniile means that the programmers assigned 1o this project are, on average, ranked
in the 15th percentile of all programmers (i.e., 85% of all programmers are better qualified). The major

arrributes to be considered in the rating are:

. Programmer ability

B- 16

PROJECT QUESTIONNAIRE

PROJECT STAFFING

. Efficiency and thoroughness
. Ability to communicate and cooperate.

These anmibutes should weight equally. The evaluation should not answer the level of experience of the
programmers. The evaluation should be based on the capability of the programmers as a team rather than
as individuals.

c. Average experience with similar applications

(Ada COCOMO: Applications Experience)

(SoftCost-Ada: Applications Experience)

Idennfy the average experience the software team has had with applications of like type, size, and complexity.
Experience is based on the average of the entire project team, not any one individual. For example on a

team with 2 people: one person has 10 years application experience and one has 2 years experience, then
average = 0 years.

d. Average level of virtual machine experience of the project team developing the software module
{Ada COCOMO: Virtual Machine Experience)
For a given software system, the underlying virtual machine is the complex of hardware and sofrware that

the system calls upon to accomplish its tasks. For example:

. If the subsystem to be developed is an operating system, the underlying virtual machine is the
computer hardware

. If the subsystem 1o be developed is a database management system (DBMS), the underlying virtual
machine generally consists of the computer hardware plus an operating system.

Programming language is not considered part of the virtual machine.

e Host Machine Expertise

(SASET: Hardware Experience)

f. Software Language and Operating System Expertise

(SASET: Software Experience)

g Experience with chosen development methodology

{SoftCost-Ada: Ada Methodology Experience)

Identify the average experience the software team has had with the development methodology (i.e. object
oriented development, structural model) which will be used on the project. Experience is based on the

average of the entire team, not any one individual at the beginning of the project. The following
explanations are offered to assist with ratings selections:

PROJECT QUESTIONNAIRE

PROJECT STAFFING

Just starting (less than 3 months) - The team will have no practical experience using new Ada methods and
will be unfamiliar with Ada concepts. They may be undergoing training.

Limited experience (3 - 6 months) - The team may be familiar with methods, but unable to take advantage
of them because they have less than 6 months of experience using them.

Experienced (6 - 12 months) - The team will be experienced with the language but will be unable to use its
underlying software engineering concepts because their experience of less than a year is still 100 limirning.

Extensive Experience (1 - 2 years) - The team will be experienced with methods and will be able 10 use most
of their capabilities to perform their work. Underlying principles are exploited.

Ada Pro (over 2 years) - The team will be staffed with Ada professionals who have over two years of
experience which qualifies them to take advantage of the language to its urmost.

h. Experience with Ada Process Model

(Ada COCOMO: Experience with Ada Process Model)

The Ada Process Model is a process model for software development to reduce project inefficiency when

large numbers of project personnel are working in parallel on tasks which are closely intermwined and

incompletely defined. Features of the Ada Process Model include the following:

. Produce compilable, compiler-checked Ada package specifications (and body outlines), expressed in
a well-defined Ada Program Design Language (PDL), for all top-level and critical lower-level Ada
components by the project’s or increments PDR.

. Identify and eliminate all major risk items by PDR.

. Use a phased incremental development approach with the requirements for each increment (called
a "build”) stabilized by the build’s PDR.

. Use small up-front engineering and design teams, with expertise in software architecture, Ada, and
the applications domain.

. Use a project risk managenent plan to deternine the approach for eliminating risk items by PDR,
and also to determine the sequence of development increments.

. Use intermediate technical walkthroughs in the early requirements and design phases.

. Use individual detailed design walkthroughs for each component and technical walkthrough for each
butld instead of a massive CDR.

i Use continuous integration via compiler checking of Ada package specifications and incremental
demonstration, rather than beginning integration at the end of unit test.

. Use bortom-up requirements verification via unit standalone tests, build integration tests, and

B-138

PROJECT QUESTIONNAIRE

PROJECT STAFFING

engineering string tests.

. Provide well-commented Ada code and big-picture design informarion instead of massive as-built
Software Design Documents, which rapidly get out of date and loose their maintenance value.

. Use a set of consistent metrics tightly coupled to the project’s Software Development Plan and its
build definitions 10 provide visibility into the code development process.

i. Project team’s equivalent duration of experience (at the beginning on the project/build) with the
programming language to be used

(Ada COCOMO: Programming Language Experience)

(SoftCost-Ada: Ada Language Experience)

Identify the average experience the software team has had with the programming language. Experience is
based on the average of the entire team, not any one individual at the beginning of the project.

j- Number of Ada projects completed by team members

(SoftCost-Ada: Number of Ada Projects Completed)

Specify the average number of Ada software development projects completed by the development team. An
Ada project is defined as the delivery of a product, packaged and prepared using Ada concepts (iLe., an
incremental build, a prototype, a software delivery, etc.). The average is based upon the entire team
including designers and senior analysts. If you are estimating an incremental development, reflect the
number of completed builds. For example, if this was the third build of your first Ada project, then you
would rate this factor as a 2 if none of your people have had Ada experience on previous projects.

k. Ada environment experience

(SoftCost-Ada: Ada Environment Experience)

Identify the average experience the analysts who are part of the team have had with the tools, equipment,
and facilities that are part of the development environment to perform similar software development tasks.
Base the number on the average of the entire team, not any one individual.

| Level of product familiarity of the development team

(SASET: Development Team)

Teamwork Capability

a. Select the type of team used for software development
(SoftCost-Ada: Team Capability)

Identify the types of teams which will be used on the project. The following explanations are offered to
assist with rating selections:

B-19

PROJECT QUESTIONNAIRE

PROJECT STAFFING

Design Teams - The software will be designed by a team of analysts who may not be involved in the
implemeniation. Personnel outside of the project may be called in to work specific problems and to
collaborate in the design.

Programming Teams - The software will be designed, developed, and tested by a ream of analysts who are
involved in the project from its start 1o finish. Team reviews and approaches to development will be used
as the team leader keeps control of the software development activities.

Participatory Teams - The software will be designed, developed, and tested by a team of analysts who use
the consensus process to arrive at both technical and managenal decisions.

Interdisciplinary Teams - Both hardware and software personnel are collocated and work as a single team
to solve their individual and interdisciplinary problems on the project using the consensus process.

L----------

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

1. Development Environment

a. Number of different types of workstations

(SASET: Workstarion Types)
A workstation is considered unique if it requires different screen clearing and set-up operations. This value
can range from 0 to 100.

b. Rate the virtual machine volatility of the development system, based on frequency of
major/minor changes

(Ada COCOMO: Virtu.! Machine Volatility - Host)
For a given software system, the underlying virtual machine is the complex of hardware and software that

the system calls upon to accomplish its rasks. For example:

. If the subsystem to be developed is an operating system, the underlying virtual machine is the
computer hardware.

. If the subsystem to be developed is a database management system (DBMS), the underlying virtual
machine generally consists of the computer hardware plus an operating system.

Ratings which are defined in terms of relative frequency of major and mnor changes are defined as follows:

. Major change: significantly effects roughly 10% of routines under development.

. Minor change: significantly effects roughly 1% of routines under development.
c. Select the following option that best assesses the embedded features of the development system

(SASET: Embedded Development System)

d. Rate the software tool/environment stability of the development system

(SoftCost-Ada: Software Tool/Environment Stability)

Identifies how stable the tools that will be used on the project are and how often changes in the

environment will be processed. The following explanations are offered to assist with ratings selections:

Buggy Compiler - The project will use a compiler which has not been thoroughly debugged and does not fully
implement the full set of requirements set forth in the Ada Language Specification.

Stable Compiler, Unstable Environment - The project will use a compiler which has been fully debugged, but
does not fully implement all of the requirements of the Ada Language Specification. The tool environment
is unstable wirh changes occurring monthly. New tools or versions of old tools are being inserted into the
environment weekly.

Stable Compiler, Mature Environment - The project will use a compiler which has been fully debugged and

B-21

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

implements all of the requirements of the Ada Language Specification. The APSE is maturing with changes
occurring quarterly. New tools or versions of old tools are being inserted into the environment monthly.

Stable Compiler, Stable Environment - The project will use a compiler which has been fully debugged and
implements all of the requirements of the Ada Language Specification. The APSE is stable with changes
occurring once a quarter. New tools or versions of old tools are being inserted into the environment
quarterly.

Stable Environment - The project will use a compiler which has been fully debugged, implements all of the
requirements of the Ada Language Specification, and is capable of supporting efficient tasking. The APSE
is very stable with changes occurring semi-annually. New tools are being inserted into the environment
quarterly.

Mature, Stable Environment - The project will use a compiler which has been fully debugged, implements
all of the requirements of the Ada Language Specification, supports tasking and has been validated. The
APSE is very stable with changes occurring semi-annually. New tools are being inserted into the
environment semi-annually with a minimum of disruption.

e Address the difference between the development hardware system and the host system

(SASET: Development Versus Host System)

Target Computer Configuration

a. Rate the virtual machine volatility of the target system, based on number of major/minor
changes

(Ada COCOMO: Virtual Machine Volatility-Target)
For a given software system, the underlying virtual machine is the complex of hardware and software that

the system calls upon to accomplish its tasks. For example:

. If the subsystem to be developed is an operating system, the underlying virtual machine is the
computer hardware.

. If the subsystem to be developed is a database management system (DBMS), the underlying virtual
machine generally consists of the computer hardware plus an operating system.

Ratings which are defined in terms of relative frequency of major and minor changes are defined as follows:

. Major change: significantly effects roughly 10% of routines under development.
. Minor change: significantly effects roughly 1% of routines under development.
b. Identify the system architecture

(SoftCost-Ada: System Architecture)

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

(SASET: Hardware System Type)
Specify the architecture of the target computer system. If the target computer system will use multiple
processors, specify the number of processors.

Centralized - The targer computer system will use a single processor.

Tightly-Coupled - The target computer system will use multiple processors which are very rightly-coupled,
typically sharing a common pool of memory.

Loosely-Coupled - The target computer system will use multiple processors which are connected in a loosely-
coupled manner with each processor typically having its own memory resources.

Federated - The target computer system will use multiple functional processors which communicate via
either a common system-level bus or a communications channel. The key aspect of this type of architecture
is the term "functional processors™. Each processor is dedicated to performing a specific function and passes
control and data information across the bus or communications channel to the other processors.

Distributed (centralized database) - The target computer system will use multiple, distributed computers,
sharing a common database, with the software distributed across these computers.

Distributed (distributed database) - The target computer system will use multiple, distributed computers, with
the software and the database(s) distributed across these computers.

3. Performance Requirements

a. Main Storage Constraint

(Ada COCOMO: Main Storage Constraint)

(SASET: Percent of Core Utilized)

Main storage refers to direct random access storage such as core, integrated-circuit, or plated-wire storage;
it excludes such devices as drums, disks, tapes, or bubble storage. Select the percentage which best reflects
the percentage of main storage expected to be used by the subsystem and any other subsystems consuming
the main storage resources.

b. Overall Hardware Constraints. Overall hardware refers to processor memory, 1/O capacity, and
throughput (i.e. CPU speed) available within the target computer system.

(SASET - Hardware Constraints)

(SoftCost-Ada: Degree of Optimization)

Specify how much optimization must be performed to make the software run within the resource constraints
of the target computer system. The foilowing explanations are offered to assist with rating selections:

Less than 50% aof Available Resources Used - The target computer system has more than enough resources
available. The developer need no optimize to fit the software into memory or to execute it within required
time.

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

A maximum of 75% of Available Resources are Used - When completed, the software will use no more than
75% of the available computer resources. The developers need to perform only a minimal amount of
optimization to cquse the software to run efficiently on the computer.

A maximum of 85% of Available Resources are Used - When completed, the software will use no more than
85% of the available computer resources. Resource restrictions will require the developers to perform some

optimization to tailor the software to memory or realize time restrictions.

A maximum of 95% of Available Resources are Used - The sofrware, when complete, will use no more than
95% of the available computer resources. This would be the case when the target computer system has
severe resource restrictions which require the developers to use a variety of optimization technigues to ensure

the software will run on the target machines.

Close to 100% of Available Resources are Used - The software, when completed, may exceed the available
computer resources. This represents an extreme case when the target processor has a fixed amount of
resources. The developers will be required to use a variety of optimization techniques, such as overlays, to
ensure that the software will run within these constraints.

c. Execution Time Constraints. Select the percentage which best reflects the percentage of availuble
execution time expected 1o be used by the subsystem and any other subsystems consuning the

execution time resource.
(Ada COCOMQO: Execution Time Constraint)
d. Select the criteria which reflects the performance constraints of the software system
(SASET: Timing and Cnticality)

Microprocessor Code

a. Percentage of software functions that are to be implemented in firmware

(SASET: Percentage of Microprocessor Code)
Percentage is with respect 1o the total sofiware job. Microprocessor code may be hosted on a chip such as:

ROM, PROM, EPROM, or any other hardware used for storing executable microprocessor insrrucrions. The
added complexity of downloading ("burning”) and testing the microprocessor software increases the

development complexity.

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

1. Project Organization

a. Number of organizations within the company significantly involved during the software
development

(SoftCost-Ada: Number of Organizations)
Specify the number of organizations directly involved in the software development effort. The following lists
examples of typical organizations included within this count:

Software Development

Software Configuration Management
Software Quality Assurance

Software Project Management

Software Test (if independent)

Project Management

Project-level Configuration Management
Project-level Quality Assurance

System Engineering

System Test (if independent)
Independent Verification and Validation (IV&V')

b. Scope of Support

(SoftCost-Ada: Scope of Support)
The following explanations are offered to assist with ratings selection.

Liaison support - The software organization will occasionally be called upon to provide limited support to
other project organizations (e.g., system test, project management, etc.). Support is provided primanly in
a review and working group capacity.

Extensive support to system test - The software organizarion will provide support to the system test
organization during the conduct of system-level testing (i.e., hardware/software integration and acceptance
testing). Support includes participation in planning, executing, and docuntenting system-level tests.

Extensive support to system engineering & system test - The software organization will provide extensive
support to many organizations involved in the project (e.g., members of system-level design and test teams,
developers if ICD's, participants in system-level review, etc.). In addition, Cost Schedule Control Systems
Criteria (C/SCSC) or Cost Schedule Status Report (CSSR) reports will be filed per customer requirements.
Such requirements generate a great deal of paperwork, in that, earned value must be computed, variances
tabulated, and technical performance documented on a periodic basis.

c Organizational Interface Complexity

(SoftCost-Ada: Organizational Interface Complexity)

B-25

' Subcontractors and co-contractors should each be counted as one separate organization.

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

Describe the interface complexity between organizations involved in the software development effort. The
following explanatrions are offered 10 assist with rating selections:

Single Interface With Collocated Customer - The software will be developed by an organization which directly
interfaces with only one other organization. The customer is located in the same facility as the developing

organization.

Single Interface With Single Customer - The software will be developed by an organization which directly
interfaces with only a single, remote customer through the software project manager.

Multiple Internal and Single External - The software will be developed by an organization which interfaces
with other organizations within the same company (i.e., quality assurance, etc.) and the customer through

the software project manager.

Multiple Internal and Single External Interfaces - The software will be developed by an organzation which
interfaces with other organizations within the same company and multiple customers through different

personnel in the project management organization.
Multiple Geographically Distributed Interfaces - The software will be developed by an organization which
is geographically distributed and interfaces with other geographically dispersed organizations, customers, co-

contractors, and subcontractors through different personnel in the project management and marketing
organizations.

d. Number of locations at which software is developed

(SASET: Development Locations)
Enter a value between 1 and 100.

e. Number of customer locations

(SASET: Customer Locations)
(SASET: Information Travel Requirements)

Computer Resources

. Characterize the development facilities and the perceived availability of the hardware (terminals
and computers)

(SASET: Development Facilities)
b. Computer resource availability
(SoftCost-Ada: Computer Resource Availability)

Identify how available conmputer equipment and facilities are for the software development effort. The
following explanations are offered to assist with rating selections:

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

Extreme Equipment and Facility Limitations - Linle if any of the compuier resources required will be
available when needed by the project. Access to machines is difficult and machine tume is limited.

Computer Shared and Remotely Accessible - The computer resources used for software development will be
located at some remove site and will be shared by multiple projects, thereby creating conflict over access.

Interactive Access to Dedicated Resources - The computer resources used for software development will be
dedicated 10 the project and will provide users with interactive access via terminals or workstations.

Dedicated Facilities With Multiple LAN-servers - The computer resources used for software development will
be dedicated 1o the project and will provide users with convenient access to a variety of machines, file
servers, and workstations via a Local Area Network.

Software Factory - The computer resources used for software development will be dedicated to the project,
convenient to use, and provide access to an ergonomically-designed, attractive Software Factory which uses

a variety of machines, workstations, and specialized Ada facilities to perform needed tasks.

c. Select the average time required to submit a job to be run until the results are back in the
developer’s hand

{Ada COCOMO: Computer Turnaround Time)

Security and Privacy Restrictions

a. Classified Application

{Ada COCOMO: Classified Security Application)

b. Security Requirements

(SoftCost-Ada: Security Requirement)

Specify the level of security requirements imposed on the software development effort. The following

explanations are offered to assist with rating selections:

Database Integrity - The only security requirements imposed on the project will be those normally imposed
to maintain database integrity and information privacy.

Physical Security - Security on the project will be handled via physical safeguards which include guards and
intrusion alarm systems.

Demonstrably Correct Trusted System - B Level trusted system requirements and physical secunity safeguards
will be required on the project. Access controls must be demonstrated and certified by independent parties.

Verifiably Correct Trusted System - A Level rrusted system requirements and physical secunty safeguards will
be required on the project. Security controls must be venfied using sophisticated proof of correction
technigues.

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

c. Internal Computer System Security Safeguards

{SASET: Software Security)
Identify the software security controls that are designed to provide internal computer security safeguards.

1.

PROJECT QUESTIONNAIRE

RESOURCE ALLOCATION

Effort
a. Total Staff

Enter toral staff months of effort end-to-end.

b. Minimum Staff Size
c. For each software activity, please provide the total effort, by phase, in staff-months it took to
complete

d. Average No. of Hours per Staff Month

Default = 152 hours/month.

(This Page is Intentionally Left Blank)

APPENDIX C

STATEMENT PROFILER DEFINITIONS

Body Semicolons: A statement terminated by a carriage return in the specification and a terminal semicolon
in the body of an Ada program, including data declarations and code used to instantiate a reusable component
itself the first time it was instantiated. Comments, blank lines, and non-deliverable code are not included in

the line count.

Data Manipulation: Program text containing any of the following keywords: PUT, PUT_LINE, GET.
GET_LINE, READ, WRITE

Data Typing: Program text containing any of the following keywords: TYPE, SUBTYPE

Essential Semicolons: Terminal semicolons excluding those used in data declarations or formal parameter
lists.

Exception: An exception is an error situation that may arise during program execution. To raise an exception
is to abandon normal program execution to signal that an error has taken place. An exception handler is a
portion of the program text specifying a response o the exception. Execution of such a program text is called

handling the exception.

Generic: A generic is a template for a set of subprograms or for a set of packages. A subprogram or package
created using the template is called an instance of the generic unit. A generic unit is one of the kinds of

program unit.

Logical: Program text containing any of the following keywords: IF, CASE, LOOP, EXIT, ELSE, ELSEIF,
WHEN, GOTO.

Objects: Number of variables and constants.

Physical Lines: Any carriage return or line feed including comments and blank lines. Reusable code is
counted the first time it is instantiated.

Program Units: Number of subprograms, packages, generics, and tasks.
Mathematical: Program text containing any of the following keywords: +, -, *, /, MOD, REM, **, ABS
Task: A task is a program unit which operates in parallel with other parts of the program.

Tasking: Program text containing any of the following keywords: SELECT, ACCEPT, ABORT,
TERMINATE

Terminal Semicolons: A statement terminated b a semicolon, including data declarations, code used to
instantiate a reusable component and the reusable component itself the first time it was instantiated. When
multiple semicolons are user within a declaration statement, the terminating semicolon is used to define the
termination of a source line of code. For example, a package specification which included a statement that
spans ten lines and is terminated by a single semicolon would count as one ASLOC. Comment, blank lines,
and non-deliverable code are not included in the line count.

(This Page is Intentionally Left Blank)

APPENDIX D

DERIVATION OF FUNCTION POINT COUNT FOR THE
REAL-TIME CSCI OF THE UH-1 FLIGHT SIMULATOR

This attachment contains a description of how function point parameters were counted for the Real-
Time CSCI of the UH-1 helicopter flight simulator, excluding diagnostics and other support software.
Counting conventions are presented by parameter type:

External Inputs
External Outputs
Logical Internal Files
External Inquiries
External Interfaces.

There are ambiguities with regard to the function point analysis for training devices. Our resolution
and interpretation of the guidelines is presented here. For each parameier type the description of how counts
were derived contains the following information:

Key points - a summary of the basic parameter definition with emphasis of
certain key factors.

Potential types within the UH-1 FS - situations in which elements were
counted as this parameter type.

Description - an annotated listing of each parameter that was counted and
the complexity level that was assigned.

Total number of element types - total count of elements for the specified
parameter.

EXTERNAL INPUTS

Key Points:

. User data or user control information that enters the external boundary of the application
. It must change something inside the system
. It is unique if it has a different format or requires different processing logic

Potential Types Within the UH-1 FS
Trainee Station:
. Cockpit Controls and Panels

Instructor Operator Station:

. Instructor Panels

. Initial Conditions

. Malfunctions Initiated by the Instructor

Description Complexity

Trainee Station Inputs:

Cockpit Instrument Panel (pp. 82,83 SRS, Vol 1)

Note: Fire Detector Test Switch and Fuel Gauge Test Switch were counted as inquiries.

1. Pressure Altimeter Low
a. Barometric Pressure
2. Marker Beacon Low
a. Power Switch
b. Sensing Switch
C. Volume Control
3. Course Indicator Low
a. Course Set Knob
4. Radio Magnetic Indicator Low
a. Set Heading Control
b. ADF/VOR No. 1 Bearing
Pointer Control
c. Compass Slaving Switch
Engine Panel
1. Low RPM Audio On/Off Low
2. Fuel Main On/Oft Low
3. Int Aux Fuel Left/Off Low
D-2

bl

9

Int Aux Fuel Right/Off Low
De-lce On/Off Low
Governor Auto/Emer Low

Chip Detector Panel

Note: Chip Detect Transmission/Tail Rotor Switch was counted as an inquirey.

Force Trim On/Off Low
Hydraulic Control On/Off Low

Lighting Panels

Instrument Lighting Panel Low
a. Instrument Console Lighting Control

b. Instrument Pedestal Lighting Control

c. Instrument Secondary Lighting Control

d. Instrument Engine Lighting Control

e. Pilot Lighting Control

f. Co-Pilot Lighting Control

Dome Lights Panel Low
a. Dome Lights White/Off/Red Switch

b. Pitot Heater On/Off Switch

Exterior Lights Panel Low
a. Exterior Lights Steady/Flash Switch

b. Exterior Lights Dim/Bright Switch

C. Anti-Collision Lights On/Off Switch

DC and AC Power Panels

DC Power Panel Low

Note: DC Volumeter Selector Switch was counted as an inquirey.

a. Main Generator Reset/On/Off Switch

b. Battery On/Off Switch

C. Starter Gen Switch

d. DC Power Manual On/Normal On Switch

AC Power Panel Low

Note: AC Power Phase Selector was counted as an inquirey.
a. Invertor Spare/Main Switch

DC Circuit Breaker Panels Average

a. DC Circuit Breakers

AC Circuit Breaker Panel

a. AC Circuit Breakers

Radio Set Control Panels

FM Radio Set Control Pancl

a. Mode Selector Switch
b. Megahertz Control
c. Kilohertz Control

UHF Radio Set Control Panel

Function Selector Switch

Mode Selector Switch

Preset Channel Control

Ten Megahertz Control

One Megahertz Control
Five-hundredths Megahertz Control

~0 a0 ge

VHF Radio Set Control Panel

a. Power Switch
b. Megahertz Control
c. Kilohertz Control

VHF Navigation Set Control Panel

a. Power Switch
b. Megahertz Control
c. Kilohertz Control

ADF Control Panel

Mode Selector Switch
Band Selector Switch
Tune Control

Loop L-R Switch

an o

TACAN Radio Set Control Panel

Function Selector Switch
Mode Selector Switch
Channel Select Control
Bit push button

&enow

Signal Distribution Panel

Low

Low

Nk W

[—

a. FM Receiver Switch
b. UHF Receiver Switch
C. VHF Receiver Switch
d. INT Switch

e. NAYV Switch

f.

Transmit-Interphone Selector Switch

Miscellaneous Panels

Miscellaneous Control Panel

a. Wiper Select Pilot/Co-Pilot Switch
b. Wiper Speed Select Switch

Cabin Heating Panel

a. Bleed Air Select Switch
b. Aft Outlet Select Switch

IFF Transponder Set Control Panel

Note: Master Control Off/Stby/Low/Norm/Emer Switch was counted as an inquirey.

Problem Control Panel

Note: INSTR CALL was counted as an inquiry.

Motion Controls are implemented completely in hardware and have no software impact.

Turbulence Level (via Select Thumbwheel)

Collective Pitch Control Lever

Collective Pitch Lever Deflections
Throttle Position

Engine Idle Stop Release Switch
Starter-Ignition Switch

Governor RPM Switch

Cyclic Control Stick

Lateral and Longitudinal Cyclic Deflections
Force Trim Push Button Switch

Pilot/Copilot Anti-Torque Pedals

Directional Pedal Position

Low

Average
Average

Average
Low

Average

Instructor Operator Station (10S) Inputs:

Trainee Station Control Panel (p. 36, SRS, Vol 1)

Note: Motion Controls are implemented completely in hardware and have no software impact.
Hardcopy Controls are counted as inquiries
ACK STUD push button was counted as an inquirey.

L Mode Controls Low
a. SEMI AUTO push button
2. Graphic Display Controls Low

Note: G TRK scaling, FULL SCALE AS, and FULL SCALE ALT were counted as inquiries.

a, G TRK ERASE push button
b. PLOT AREA RCL push button
() AREA SEL thumbwheel switch
d. GCA COMM push button
3. Intercom Controls Low

Note: Speaker and Volume Intercom controls are implemented in hardware and have no software

impact.
a. HDST A push button
b. HDST B push button
4. Playback Controls Average
a. MIN SEL Thumbwheel
b. RESET push button
c. IN PROG push button
d. SLOW TIME push button
€. PAUSE push button
5. Malfunction Controls Average
a. SEL Thumbwheel
b. INSR push button
c. INHB RMYV push button
d MALF push button (located on Problem Control Panel)
e Select Thumbwheel (located on Problem Control Panet)
6. Crash Override Mode Controls Low
a. CRASH OVRD push button Trainee Station Control Panel
7. Simulation Freeze/Continue Controls Low
a. PROB FRZ push button Trainee Station Control Panel
b. FRZ push button Problem Control Panel
c. CONT push button Problem Control Panel
8. Reset Simulation to System Start-Up Conditions Low
a. PROB RESET push button Trainee Station Control Panel

D-6

Note:

Ealbalis My

b. RESET push button

Automatic Copilot Mode Controls Low
a. Enable AUTO COPILOT push button

b. Disable AUTO COPILOT push button

Auxiliary Information Display (AID) Control Panel

The following controls were counted as inquiries:

d Display Area Select Controls
. Transfer Cockpit Area to Edit Area Controls

The following controls were counted as outputs:

Problem Control Panel

Trainee Station Control Panel
Problem Control Panel

. Display Select Controls

. Display/Edit Format Select Controls

AUX MODE push button Low
Parameter Control Average
a. FLT PRMTR FRZ push button

b. FLT PRMTR RSTRE push button

Communications Control Panel

CM AUDIO NET push button Low
MON STUD HDST push button Low
ATC push button Low
Transmit push buttons Low
a. UHF push button

b VHF FM push button
c. VHF NAV push button
d ICS push button

Instructor Initiated Malfunctions (described in MMR pp. 243-257)

Note: Similar malfunctions are grouped. Groupings are based on Object Interface Diagrams

presented in the preliminary design.

Malfunctions Affecting Tail Rotor Forces and Moments Low
a, Tail Rotor Gearbox (Group 3 Flight Malfunctions)
Malfunctions Affecting Flight Controls Low
Flight Malfunctions (Group 3)

a. Tail Rotor Loss

b. Tail Rotor Thrust

C. Tail Rotor Fixed Pitch

Malfunctions Affecting Weight and Balance Low
a. Tail Rotor Gearbox (Group 3 Flight Malfunctions)
Malfunctions Affecting Electrical Power System High

Electrical System Malfunctions (Group 4)

Complete Electrical Failure
Main Generator

Standby Generator

Main Invertor

STBY Invertor

pa0ow

Indicator Circuit Breaker Malfunctions (Group 5)

Attitude Indicator Pilot #1 CB, OA
Attitude Indicator Pilot #2 CB, OC
Attitude Indicator Copilot #1 CB, OA
Attitude Indicator Copilot #2 CB, OC
Course Direction Indicator CB
Gyrocompass CB

Turn-and-Slip Indicator

Engine and Transmission Temp CB
Fuel Quantity Indicator CB

Fuel Pressure Indicator CB

Engine Oil Pressure Indicator CB
Transmission Qil Pressure Indicator CB
Torquemeter CB

Nonessential Bus VM CB

PErRT ISR O AN O

Navigation/Communication Circuit Breakers (Group 6)

VHF Transceiver CB

UHF Transceiver CB

FM Transceiver CB

Intercom - Pilot CB

Intercom - Copilot CB

IFF Transponder CB

ADF Compass CB

VHF Navigation Receiver CB
Marker Beacon CB

mEEoMe R0 TN

[llumination Circuit Breaker (Group 7)

Instrument Panel Lights CB
Utility Lights CB

Dome Lights CB

Caution Lights CB

a0 oe

10.

Instrument Secondary Lights CB

Console and Pedestal Lights CB

Generator Reset CB

Invertor Control CB

Main Invertor Power CB

Spare Invertor Power CB

Alternating Current (AC) 115-Volt Relay CB
AC 115-Volt 28-Volt Transformer CB

Lt LU X

Miscellaneous Circuit Breaker (Group 8)

a. Starter Relay CB

b. Ignition System CB

c. Governor Control CB

d. Engine Anti-Ice CB

e. Idle Stop Release CB

. Fuel Valve CB

g Right Fuel Boost Pump CB

h. Hydraulic Conirol CB

i. Force Trim System CB

j- Pitot Heater CB

k. RPM Limit Warning CB

L Fire Detect CB

Malfunctions Affecting Caution Advisory Panel Low

a. Master Caution Light (Group 4 Electrical System Malfunctions)
Malfunctions Affecting the Fuel System Low

a. Fuel Quantity Indicator (Group 1 Indicator Malfunctions)

b. Fuel Pressure Indicator (Group 1 Indicator Malfunctions)

c. Left Fuel Boost Pump (Group 4 Electrical System Malfunctions)

d. Right Fuel Boost Pump (Group 4 Electrical System Malfunctions)
Malfunctions Affecting the UHF Radio Low

a. UHF Transceiver (Group 4 Electrical System Malfunctions)
Malfunctions Affecting the FM Radio Low

a. FM Transceiver (Group 4 Electrical System Malfunctions)
Malfunctions Affecting VHF Communications Low

a. VHF Communications Transceiver (Group 4 Electrical System Malfunctions)
Malfunctions Affecting VHF Navigation Low

a, Glide Slope Needle (Group 1 Indicator Malfunctions)

b. VHF Navigation Receiver (Group 4 Electrical System Malfunctions)
c Marker Beacon Receiver (Group 4 Electrical System Malfunctions)

D-9

Malfunctions Affecting the ADF Radio Low
a. LF-ADF Receiver (Group 4 Electrical System Malfunctions)
Malfunctions Affecting the Engine Power Train Low

Engine/Transmission Maifunctions (Group 2)

a. No Start

b. Short Shaft Failure

C. Inlet Guide Vane Actuator

Malfunctions Affecting the Engine Gas Generator Average

Engine/Transmission Malfunctions (Group 2)

a. Engine Fuel Pump

b. Flameout/total engine failure

C. Hot Start

d. Hung Start

e. Short Shaft Failure

f. Compressor Stall

g Governor RPM Increase/Decrease Switch

h. Inlet Guide Vane Actuator

i Governor, Low Side

i Governor, High Side

k. Droop Compensator

L Engine Tachometer Generator

Malfunctions Affecting Engine Lubrication Low

a. Transmission Oil Loss - Abrupt (Group 2 Engine/Transmission Malfunctions)
b. Transmission Oil Loss - Gradual (Group 2 Engine/Transmission Malfunctions)
C. Engine Fire (Group 2 Engine/Transmission Malfunctions)

d. Engine Chip Detector Light (Group 4 Electrical System Malfunctions)

€. Chip Detector Light (Group 4 Electrical System Malfunctions)

Maifunctions Affecting the Control Loading System Low
Flight Malfunctions (Grcup 3)

Tail Rotor Thrust

Lateral Cyclic

Lateral Cyclic Hardover
Longitudinal Cyclic
Longitudinal Cyclic Hardover
Total Hydraulics Failure

mean o

Malfunctions Affecting the Motion System Low

Flight Malfunctions (Group 3)

a. Main Rotor Blade Track
b. Main Rotor Blade Balance
C. Tail Rotor Track
17. Malfunctions Affecting Instruments Low

Indicator Malfunctions (Group 1)

Attitude Indicator - Pilot

Attitude Indicator - Copilot

Turn Needle

Gyromagnetic Compass Heading Indicator
Gyromagnetic Compass - Slave Failure
Pitot System Failure (icing)

N, Tachometer

Rotor Tachometer Generator
Torquemeter

Engine Oil Temperature Indicator
Engine Oil Pressure Indicator
Transmission Oil Temperature Indicator
Transmission Oil Pressure Indicator
Fuel Quantity Indicator

Fuel Pressure Indicator

oPpgrFT @ OANTH

Initial Conditions and Flight Parameters

1. Initial Conditions Average

Altitude

Airspeed

Mag Heading

Roll

Pitch

Yaw

Vertical Velocity
Turn Rate

Torque Pressure
Rotor RPM
Latitude

Longitude

Fuel Weight

Center of Gravity
Gross Weight
Barometric Pressure
Outside Air Temperature
Wind Velocity
Wind Direction
Turbulence Level
Sound Level

Radio Static Level
Aux Power Unit
Fuel Burn Multiplier

HESECPNOVBOPRRTATIFEOANTE

2. Flight Parameters Average l
Total Number of UH-1 FS External Inputs .
Low Average High
Trainee Station Inputs: 32 5 0
Instructor Operator Station (108) Inputs: 28 6 1
TOTAL: 60 11 1 I
D-12 l

EXTERNAL OUTPUTS

Key Points:

. User data or user control information that leaves the external boundary of the application
measured

. It is unique if it has a different format or requires different processing logic

. It does not include output response of an external inquiry

Potential Types Within the UH-1 FS

Auxiliary Displays
Maps

Map Components
Indicator Displays
Station Identifiers

Description Complexity

Map Displays - Problem Status Displav Area (pp. 65-73)

L Problem Status Information High
Display
a. Training Mode Group
b. Air Traffic Control Group
c. Instructor Alerts Group
d. Environmental Conditions Group
e. Malfunction Status Group

Map Displays - Graph Area (pp. 65-73)

L. Air Speed Graph Low
Altitude Graph Low

Map Displavs - Map Plot Area (pp. 65-73)

Cross Country Map Average
Approach Map Average
GCA Graph Average
GCA Information Average
Aircraft Identification

Heading

Position Relative to Course

Range

Altitude

el

oa0 o

Map Components (pp. 65-73)
1. Ground Track Low

P S

Event Symbols Low

Auxiliary Information Display (pp. 51-53)

Flight Parameter List Low
Initial Condition Sets Low
Malfunction Tables Low
Radio Navigation Lists Low
Stored Plots Low

Cockpit Indicator Display

Note: No outputs since this display repeats selected cockpit information for view by the instructor.

Cockpit Instrument Panel (pp. 82,83, SRS, Vol 1)

Note: The following warning indicators were counted as malfunctions:

R R R RN

e)
W= o

14.
15.

16.
17.
18.
19.
20.
21.
22.

. Engine Air Filter Light’
. RPM Warning Light’

. Fire Warning Indicator Light’

Airspeed

Pitch

Bank

Pressure Altitude

Fuel Pressure

Fuel Quantity

Engine Oil Pressure
Engine Oil Temperature
Engine RPM

Rotor RPM

ID 998 Synchronizer Angle
Main Generator Load

DC Voltage

a. Battery

b. Main Generator
c. Standby Starter-Generator
d. Essential Bus

e. Nonessential Bus
Standby Generator Load
AC Volage

a. AB

b. AC

c. BC

Master Caution Enable/Disable
Gas Producer RPM

Exhaust Gas Temperature
Vertical Velocity

Torque Pressure

Transmission Oil Pressure
Transmission Oil Temperature

D- 14

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Average

Low
Low

Low
Low
Low
Low
Low
Low
Low

23. Turn Rate Low

24. Slip Low
25. Magnetic Heading’ Low
26. Outside Air Temperature’ Low

Note’: Not listed in Figure 3.4-25 of SRS but shown in Figure 3.4-23.

Trainer Status Information Display (p. 83, no'’s. 31-36, SRS, Vol 1)

Note: INSTR ACK was counted as an inquiry.

L PROB FRZ indicator light Low

2. MTN OFF indicator light Low

3. AUTO COPILOT indicator light Low

4, TRNR READY indicator light Low

5. PLAY BACK ON indicator light Low
Problem Control Panel (pp. 90-92)

1. SLOW indicator Low
2. IN PROG indicator Low
Caution/Advisory Indicators (page 93 of SRS, Vol 1)

Note: The RESET/TEST illumination will be performed by stimulating the hardware directly.
Note: These were already counted as outputs (see Attachment A), or associated with a malfunction
which was counted as an input.
. Engine Oil Pressure
. Engine Chip Detect
. Left Fuel Boost
. Right Fuel Boost
. Engine Fuel Pump
. 20 Minutes Fuel
d Fuel Filter
. Gov Emer
N Aux Fuel Low
. XMSN OQil Pressure
. XMSN Oil Hot
. Hydraulic Pressure
. Engine Inlet Air
. Inst Invertor
o DC Generator
. External Power
. Chip Detector
. IFF
Station Identifiers
L. Marker Beacon Signal Low

Localizer Signal Low
3. VOR Signal Low
4, ADF Signal Low
Other

Note: The temporary hydraulics malfunction provides feedback forces to the collective, cyclic, and pedals.

1. Cyclic Average
2. Pedals Average
3. Collective Average
4. DC Circuit Breakers Average
S. AC Circuit Breakers Low
6. ADF Radio Tuning Meter Low
Position
7. Touchdown/Crash Condition Average

Total Number of UH-1 FS External Outputs

Low Average High
TOTAL: 47 10 1
D-16

LOGICAL INTERNAL FILES

Key Points:

. A logical internal file is each logical group of data that is generated, used, and maintained
by the application.

. Logical internal files are accessible to the user through external input, output or inquiry type.

. Databases are logical internal file types.

. The user must be aware that the file exists ie., the file is not implementation dependent.

Potential Types Within the UH-1 FS
. Runtime Data Bases
Description Complexity

Runtime Data Bases

Note: Malfunction Tables, Radio Navigation Lists, and Map Files were brought over via courseware
files and cannot be edited. Therefore, they were not counted as Logical Internal Files.

1. Initial Condition Sets Average

2. Flight Parameters Average
Other

L Stored Plots Low

2 Playback Information High

Total Number of UH-1 FS External Interfaces

Low Average High
Runtime Data Bases: 0 2 0
Other: 1 0 1
TOTAL: 1 2 1

D-17

EXTERNAL INQUIRIES

Key Points
. Each unique input output combination
. Cause and generate an immediate output
. Causes no change to internal data
. Do not count a soft key as an inquiry if it generates a picture that was counted as an external

output.
Potential Types Within the UH-1 FS
Graphic Display Controls
Auxiliary Information Display Controls

. Test Switch
. Other

The following unique input/output combinations were counted for the UH-1 FS. The "input” part of
the combination is numbered under the category heading, Input. The numbers correspond to values under
the heading Result, to show each unique pair. The complexity of the input/output combination is listed with
the input part of the combination.

Description Complexity

INPUT

Timer/Display Control Panel (pp. 62-65)

1. Cockpit Display Select Controls Low
a. 1 push button
b. 2 push button

2. Display 10 Student Low
a. 1 push button
b. 2 push button

3. Timer Low
a. Start/Stop
b. Reset

Trainece Station Control Panel (pp. 38-40)

Graphic Display Controls:

1. Scaling push buttons Low
a. G TRK 12.5 x 12.5
b. G TRK 25 x 25
c. G TRK 100 x 100
2. FULL SCALE AS Low
D-18

W

FULL SCALE ALT Low
Hard Copy (p- 34)

a. PRINT PLTR SMY Low
b. PRINT PROC SMY Low

Auxiliary Information Display (AID) Control Panel (pp 43-53)

Note: The following Display Select Controls -

a. GCA push button

b. CROSS CNTRY push button
c. AREA push button, and
Display/Edit Format Select Controls -
a. FLT PARAM push button

b. FAIL push button

c. INIT COND push button

d STORED PLOTS push button
€. RADIO NAYV push button
were counted as outputs.

Display Area Select Controls Low
a. EDIT AREA push button

b. CKPT 1 AREA push button

c. CKPT 2 AREA push button

d. CKPT 3 AREA push button

e. CKPT 4 AREA push button

Transfer Cockpit Area to Low
Edit Area Controls

a, 1 push button

b 2 push button

c. 3 push button

d 4 push button

Test Switch

Fire Detector Test Switch (p. 82) Low
Fuel Gauge Test Switch (pp. 82, 86) Low
Chip Detector Switch (P. 89) Low

Problem Control Panel

INSTR CALL push button Low

IFF Transponder Set Control Panel (MMR, p. 181)

Transponder Master Control Low
Switch

AC Power Panel (p. 94)

D-19

1. AC Power Phase selector Low

DC Power Panel (p. 99)

L DC Voltmeter selector switch Low
RESULT
Timer/Display Control Panel
1. Repeater Instruments show readings for the selected cockpit. Cockpit Select Indicators will be

illuminated based on which selection was made at the Timer/Display Control Panel.
Allows Cockpit CRT display within a cockpit.
Timer display is controlled by Start/Stop and Reset buttons.

W

Trainee Station Control Panel

Approach Map is displayed at the selected scale.
Airspeed Graph is enlarged.

Altitude Graph is enlarged.

(unknown)

bl ol A e

Auxiliary Information Display Controls

1. Allows selection of cockpit areas in the display area of the AID.
2. Transfers a display from the display area of the AID to the edit area of the AID.

Test Switch

1. Causes Fire Warning Light to Illuminate while depressed.

2. Causes Fuel Quantity Indicator to move from actual reading to
lesser reading.

3. Indicates the trouble area when the Chip Detector caution
light is illuminated.

Problem Control Panel

1. ACK STUD push button flashes.
IFF Transponder Set Control Panel

1. Transponder mode is displayed at the Problem Status Display.
AC Power Panel

1. Permits monitoring of any one of the three phases (AB, AC, and BC) on the AC Voitmeter.
DC Power Panel

1. Permits monitoring of voltage being delivered from any of the following sources: Battery, Main

D-20

Generator, Standby Starter-Generator, Essential Bus, Non-Essential Bus.

Total Number of UH-1 FS External Inquiries

Low Average
TOTAL: 17 0
D-21

EXTERNAL INTERFACES
Key Points:
. Files passed or shared between applications should be counted as external interface types

Potential Types Within the UH-1 FS
. Data files from the ACS
Description

L Courseware Files

Total Number of UH-1 FS External Interfaces

Low
Other: 0
TOTAL: 0
D-22

Complexity

High

B EE B AN S E AN U B e W aw O a Ny B ay o
) R

FUNCTION POINTS CALCULATION

Function Count:

Description

External Input
External Output
Logical Internal
Ext Interface File
External Inquiry

Low
60x3 =180
47x4 =18
Ax7=_17
0x5=_0
17x3 = _51

General Information Processing Function

WHNAn AW

GCA

FP

LEX

Characteristic

Data Communications
Distributed Functions
Performance

Heavily Used Configuration
Transaction Rate
Online Data Entry
End User Efficiency
Online Update
Complex Processing
Reusability
Installation Ease
Operational Ease
Multiple Sites
Facilitate Change

Total Degree of Influence (TDI):

General Info. Proc. Func. Adj.
Function Points Measure

Ada Language Expansion Factor

SLOC Source Lines of Code Count

Average

p—
[y

|o|o|~|5|
oM M e
IS n e
L I T T
lolo || |8

=
~o &

I -
e el e

wonon
|o|5|;|\.lo

lo = = ==
O W

Total

230
245
42
10
31

Total Unadjusted Function Points (FC): 578

Degree of Influence Value

— W ENWER W WWeEWVE

B

= 0.65 + (0.01 x TDI)

= FC x GCA

= FP x LEX

wn

1L

12.
13.

14.
15.
16.
17.
18.

19.
20.
21.
22.
23.
24.

25.
26.

ATTACHMENT A

EXTERNAL OUTPUTS FOR COCKPIT INSTRUMENT PANEL

Qutput Output Device
AC Voltage * AC Voltmeter

¢ Inst Invertor Caution Light
Pitch * Attitude Indicator
Bank ¢ Attitude Indicator
Airspeed * Airspeed Indictor

* Airspeed Linear Indicator
DC Voltage * DC Voltmeter
Rotor RPM * Dual Tachometer

* Rotor RPM Linear Indicator
Engine RPM ¢ Dual Tachometer

* Engine RPM Linear Indicator
e Low RPM Audio

Engine Oil Pressure * Engine Oil Pressure Indicator
* Engine Oil Pressure Caution Light
Engine Oil Temperature * Engine Oil Temperature Indicator
Exhaust Gas Temperature * Exhaust Gas Temperature Indicator
» Exhaust Gas Temperature Linear Indicator
Fuel Quantity * Fuel Quantity Indicator

* Minutes of Fuel Remaining Digital Readout
* 20 Minute Fuel Remaining Caution Light
¢ Auxiliary Fuel Low Caution Light

Fuel Pressure * Fuel Pressure Indicator
Gas Producer RPM * Gas Producer Tachometer
* Gas Producer Linear Indicator
Main Generator Load * Main Generator Loadmeter
Magnetic Heading * Radio Magnetic Indicator
Master Caution Enable/Disable * Master Caution Light
Outside Air Temperature * Outside Air Temperature Indicator
Pressure Altitude * Barometric Pressure Altimeter
* Altitude Digital Readout
ID 998 Synchronizer Angle * Radio Magnetic Indicator
Standby Generator Load * Standby Generator Loadmeter
Torque Pressure * Torquemeter
* Torque Pressure Linear Indicator
Transmission Oil Pressure * Transmission Oil Pressure Indicator
* Transmission Oil Pressure Caution Light
Transmission Oil Temperature * Transmission Oil Temperature Indicator
* Transmission Oil Hot Caution Light
Slip * Turn & Slip Indicator
Turn Rate (Yaw) * Turn & Slip Indicator
Vertical Velocity * Vertical Velocity Indicator

* Vertical Velocity Linear Indicator

D-24

APPENDIX E

DERIVATION OF FUNCTION POINT COUNT FOR THE
AUTOMATED COURSEWARE SYSTEM

This attachment contains a description of how function point parameters were counted for the
Automated Courseware System (ACS). The Automated Courseware System (ACS) software is the component
providing the capability to develop and modify trainer courseware via the Automated Courseware workstation.
The ACS provides for the formulation and editing of UH-1 FS mission scenarios consisting of navigational
aides, initial operating conditions, and real-time maps.

The ACS is divided into two CSCs: 1) the ACS CSC, and 2) Map Preview CSC. The ACS CSC is
the software for all the courseware data entry tasks. It is activated from the system main menu whenever
courseware modifications are to be made. Running the ACS CSC results in the creation of a courseware
floppy. The Courseware Loader must be run to read the ACS courseware floppy and create real-time format
data tables. Having loaded the courseware files, the Map Preview CSC can be used to view the map displays.
When viewing is complete, pressing Control-Q (™ Q) quits the program and returns the user to the ACS main

menu.
Counting conventions are presented by parameter type:

External Inputs
External Outputs
Logical Internal Files
External Inquiries
External Interfaces.

For each parameter type the description of how counts were derived contains the following
information:

. Key points - a summary of the basic parameter definition with emphasis of
certain key factors.

. Potential types within the UH-1 FS - situations in which elements were
counted as this parameter type.

. Description - an annotated listing of each parameter that was counted and
the complexity level that was assigned.

. Total number of element types - total count of elements for the specified
parameter.

EXTERNAL INPUTS

Key Points:

. User data or user control information that enters the external boundary of the application
. It must change something inside the system
. It is unique if it has a different format or requires different processing logic

Navaids Data State Menus

Description Complexity
1. Navaids Data Menu Low
2. ADF Menu Low
3. VOR Menu Low
4. TAC Menu Low
5. VORTAC Menu Low
6. ILS Menu Average
7. GCA Menu Average
8. UHF Menu Low
9. FM Menu Low
10. VHF Menu Low
11. Intersections Menu Low
12. Obstructions Menu Low
13. Vector Menu Average
Training Data State Menus
Description Complexity
1. Training Data Menu Low
2. Initial Conditions Data Edit Menu Average
3. Approach Map Specifications Edit Menu Low
4. Gaming Area Specifications Edit Menu Low
4. Navaids Selection Menu Low
E-2

EXTERNAL OUTPUTS

Key Points:

User data or user control information that leaves the external boundary of the application
measured

It is unique if it has a different format or requires different processing logic

It does not include output response of an external inquiry

Description Complexity
Reports
1. Navaids data base sorted by airfield and Low

call sign designation
2. Training area data (IC, map, and selected Average
navaids data)

Map Preview Graphic Displays

il

Cross County Map (Map #0) Average
Approach Plate Maps (Map #0 - #9) Average

LOGICAL INTERNAL FILES

Key Points:

A logical internal file is each logical group of data that is generated, used, and maintained
by the application.

Logical internal files are accessible to the user through external input, output or inquiry type
Databases are logical internal file types

The user must be aware that the file exists ie., the file is not implementation dependent

ACS Data Base

Description Complexity
| Navaids Average
2. Initial Condition Sets Low
3. Map Definitions Low
4. Gaming Area Definitions Low

EXTERNAL INQUIRIES

Key Points:

. Each unique input - output combination
. Cause and generate an immediate output

. Causes no change to internal data

. Do not count a soft key as an inquiry if it generates a picture that was counted as an external

output
Control Keys
Description Complexity
1. Finished (~ F) Low
2. Page (" P) Low
3 Quit (~ Q) Low
Menus
1. ACS Main Menu Low

EXTERNAL INTERFACES

Key Points:

. Files passed or shared between applications should be counted as external interface types

Hardware/Software Interfaces
Description Complexity

L Courseware Files Average

FUNCTION POINTS CALCULATION

Function Count:

Description

Low
External Input 14x3 = 42
External Output 1x4=_4
Logical Internal 3x7=21
Ext Interface 0x5=_0
Ext Inquiry 4x3=_12

General Information Processing Function
Characteristic

Data Communications
Distributed Functions
Performance

Heavily Used Configuration
Transaction Rate
Online Data Entry
End User Efficiency
Online Update
Complex Processing
10. Reusability

11 Installation Ease

12. Operational Ease

13. Multiple Sites

14. Facilitate Change

VNN R W

Total Degree of Influence (TDI):

CAF Complexity Adjustment Factor

FP Function Points Measure

LEX FORTRAN Language Expansion Factor
SLOC Source Lines of Code Count

|O In—d |v—- Iw |4h

Average High

x 4=_16 _0x6=_0
x 5=_15 0x7=_0
x10 = _10 _O0x15=_0
x 7=_17 _0x10=_0
x4=_0 _O0x 6=_0

Total Unadjusted Function Points (FC): 12

Degree of Influence Value

0

2

0

0

0

5

2

3

0

1

2

1

0

0

16

= 0.65 + (0.01 x TDI) = .81
= FC x CAF = 102.87
= = 1
= FP x LEX = 7304

(This Page is Intentionally Left Blank)

APPENDIX F

RESOURCE ESTIMATION REPORTS

Estimating Model: ADA COCOMO COSTMODL Output Summary

The NASA Interactive Software Cost Modeling System
Version 5.1.0
January 15, 1992 16:46:45

PROJECT TITLE
ADA COCOMO, from Carnegie Mellon conference

PROJECT DATA FILE

File Title: UH-1 FS Redevelopment Project - Estimate at completion
File Name: UHLFS Save Date: 1/15/1992 Project Name: UHLFS

PROJECT CONFIGURATIQON FILES

Phase Distribution Data File: P871104A

Effort & Schedule Data File EFFSCH89
Multiplier Data File ADACQCMO
Estimating Model: ADA COCOMO Project Mode: Semi-Detached

PROJECT DEVELOPMENT COSTING EQUATION
Effort Coefficient : 3.00 Effort Expenent : 1.10
Schedule Coefficient: 3.00 Sc¢’ .edule Exponent: 0.38

PROJECT MAINTENANCE COSTING EQUATION
Effort Coefficient : 3.00 ffort Exponent : 1.05

Data For The ADA COCOMO Estimation Equation
ADA COCOMO, from Carnegie Mellon conference
January 15, 1992 16:46:45

Development Ratings Maintenance Ratings
Exp W/ APa 0.040 Use Of MPPs 0.030
Design At PDR 0.034 Conformance 0.020

Risks By PDR 0.040
Reg Volatility 0.016

(Sigma)Summation Of Rates 0.130 Summation Of Rates 0.050

Difference between EMBEDDED MODE and ADA MODE with ratings of Zero = Q.160

User Selections that make up the ratings for the Estimating Equations
The Current Selections for this case are shown in bold type

The values related to the respective selection columns are:
0.0 0.01 0.02 0.03 0.04 0.05

Selections which comprise the “Exp W/ ADA'" rating
Exp W/ Ada Greatest Greater General Some Little No

Selections which comprise the '"Design at PDR' rating

Sch,Budget ,Etc Fully Mostly Generally Some Little None
A of Dev Sch 408 33y 25% 17% 10% 5%
§ Req Top S/W 120% 100% 80% 60% 40% 20%
Tocl Support Full Strong Good Sose Little None
Level Uncert Very Little Some Consid- Signif- Extreme
Little erable icant
F-2

Estimating Model: ADA COCOMO COSTMODL Output Summary

Selections which comprise the "Risks by PDR" rating
Risk Management Fully Mostly Generally Some Little None
Sch,Budget,Etc Fully Mostly Generally Some Little None
% of Dev Sch 40% 33% 25% 17% 10% 5%
% Req Top S/W 120% 100% 80% 60% 40% 20%
Tool Support Full Strong Good Some Little None

Selections which comprise the "Req Volatility" rating
Sys Req Base Fuolly Mostly Generally Some Little None
Level Uncert Very Little Some Consid- Signif- Extreme
Lictle erable icant
Org Track Recd Excellent Strong Good Some Little None
Use of Incr Dev Full Strong Good Some Little None
Sys Arch Mod Fully Mostly Generally Some Little None

Selections which comprise the "Use of MPPs" rating
Use of MPPs Greatest Greater General Some Little No

Selections which comprise the '"Conformance" rating
Maint Conform Full General Often Some Little None

ADA COCOMO PROJECT DEFINITION DATA
ADA COCOMO, from Carnegie Mellon conference
January 15, 1992 16:46:45

Component Number 1 Component Name: UH1l FS
LINES OF NEW CODE ADAPTED CODE
Least H 78K Total Lines H 13K
Most Likely: 78K Percentage of ReDesign : 10%
H 78K Percentage of ReCode : 30%
: 10%
Dollar Cost per Man Month: $§ 0
ONGOING MAINTENANCE
Lines Added per Year: OK Lines Modified per Year: 0K
COST DRIVER RATINGS AND VALUES
COST DRIVER RELY DATA CPLX RUSE TIME

Development L0 0.88 LO 0.94 HI 1.08 VE 1.30 NO 1.00
Maintenance NO 0.96 NO 1.00 NO 0.97 NO 1.00 NO 1.00

COST DRIVER STOR VMVH VMVT TURN ACAP
Davelopment NO 1.00 LC 0.92 LO 0.93 Lo 0.87 HI 0.80
Maintenance NO 1.00 NO 1.00 NO 1.00 NO 1.00 NO 1.00

COST DRIVER PCAP AEXP VEXP LEXP MODP
Development NO 1.00 NO 1.00 NO 1.00 Lo 1.14 NO 0.98
Maintenance NO 1.00 NO 1.00 NO 1.00 NO 1.04 NO 1.00

COST DRIVER TOOL SECU
Development NO 1.00 NO 1.00
Maintenance NO 1.00 NO 1.00

Schedule Cost Driver Eaf = 1.00
Remaining Cost Driver Eaf = 0.77
Total Cost Driver Eaf = 0.77

Greatest
l Percentage of Integration

COSTMODL Output Summary

Estimating Model: ADA COCOMO

Software Development Costs Using
Semi-Detached Mode

ADA COCOMO, from Carnegie Mellon conference
January 15, 1992 16:46:45

EAF MM Nom MM Dev EDSI/MM K$/Comp $/EDSI

Component KEDSI AAF
1- UHL1 Fs 79.9 16 0.77 374 288 277 o] 0
Total KEDSI 79.9 Totals 288 277 0 0
(MM) Nom 374 Dev Schedule 25.2 Nom schedule 25.2
(EDSI/MM)-Nom 214
ADA COCOMO PROJECT DEFINITION DATA
ADA COCOMO, from Carnegie Mellon conference
January 15, 1992 16:46:45
LINES OF NEW CODE ADAPTED CODE
Least t 77.765K Total Lines 1 13.472K
Most Likely: 77.765K Percentage of ReDesign : 10%
Greatest : 77.765K Percentage of ReCode : 0%
Percentage of Integration : 10%
Dollar Cost per Man Month: $0
ONGOING MAINTENANCE
Lines Added per Year: OK Lines Modified per Year: OK
QUTPUT SUMMARY
ADA COCOMO, from Carnegie Mellon conference
January 1%, 1992 16:46:45
ACTIVITY DISTRIBUTION BY PHASE
Total Delivered Source Instructions: 79.9K
Effactive Delivered Source Instructions per Man Month: 276.9
11

Number of FullTime Software Professionals:

1 |
I -0 0°0 V'gzz 679 ! pror 9°11 !'g92 L9 o1z €°§ ! sTvior |
_ 0°0 0°0 _ €L $°0 _ £°G 9°'0 | €L 50 I £°6 €0 | sTenuen _
! 0°0 0°0 | 0°8 9°0 | §°9 8°0 _ sz zZ 0 _ 0°€ z°0 | eoueanesy Kartend/abu Juod _
! 0°0 0°0 | €L S0 [€°9 L0 | G*0T L0 | 0°tT L*O ! 807330 30efo1d !
_ 0°o 0°0 _ 0°6Z 072 | [Ad:] o°t | 2L S°0 _ z°L v°0 _ UOTARPITRA B UOTIWOTITIOA _
[0°0 0°0 [0°¢g z°0 _ 25 9°0 _ [0 ! L€ z°0 ! Suyuuerd 1seg _
_ 0°0 0°0 _ 0°8€ 9°Z _ §°9¢ 9°9 _ Z°El 6°0 _ 0°g €°0 _ futwmerboid _
[0°0 0°0 _ 0°G £°0 _ 08 6°0 ! 01y L°2 l'zoct &0 | ubyseg 1onpord |
_ 0°0 0°0 _ G2 20 _ ('3 4 (] _ $*z1 8°0 _ S'sy v°2 _ sesiyeuy sjueumerinbey |
[(%) syauoKW | (%) 8YIUOK | (%) SYIUOW | (%) SUIUOW | £y 8YIUCW | _
_ aduruBIUTRW _ 188%, % jeabajug “ putumexboad “ ubysaqg 3onpoad _ sjuuboy % sueld _ ALIAILOVY . _
“ BYJUOW Z2°G2 = 8Tnpeyss u:memw~m>wn jonpoid ' “
| |
l 90 0 l'o°t1 o0 I o's1 0O (A 0 I g°¢ 0 ! sTvioL |
_ 0°0 0 | 8°0 o} _ L*0 0 | §°0 0 _ 2°0 0 ! syenuen |
_ 0°0 0 _ 6'0 0 _ 6'0 0 [z°0 0 I 1°0 0 _ eoueinssy X31yrend/ibw juod |
_ 0°0 0 _ 8°0 0 | 6°0 0 _ 8°0 0 _ S°0 0 ! 821330 3oe(o1d !
(0°0 0 q 2'e 0 { (A 0 ﬁ 50 0 ~ €0 5} ! UOTIEPTI¥A ¥ UOTIESTITIEA J
_ 00 0 _ £°0 0 _ L0 0 _ ¥'0 0 _ 1°0 0 _ butuuerd 1seg !
[0°0 0 | (Al 4 o] _ 6°L 0 I 0°1 0 | z°0 0 | burwwesboxd _
_ 0°0 0 _ 9°0 0 _ T°1 0 _ 0°€ 0 _ L0 0 _ ubyseq 1onpoid _
! 0°0 0 _ £°0 0 ! 9°0 0 _ 50 [4} _ Lot 4] _ sesATeuy sijusmeiynbay _
_ dsd sIe1roq i _ dsd sieTrod 3 _ dasd sieyrod M _ 4sd si1ey1od M _ dasd 8IRTTOA % _ _
_ eJueuaIuTeKr } 1883, 3 jeabejul ! bButumerborgd | ufSysag 3onpoid _ sjuwbey % suwrg _ ALIAILOVY _
" ' ' sIerTod X 0°0 ! = 83180) u:oanHw>oo 100poa1g (“
[!
l 60 070 b g:92 g-9¢ l g-96 T1-€9T VoLt 17ev !0t z 0z ! stezor |
_ 0°'0 0°0 _ €L "G ! £°6 9°8 _ £°L 9°¢ t £°6 11 | stenuen |
_ 0°0 0°0 _ [} 1°9 _ G°9 9°01 _ 4 z°1 _ 0°€ 9°0 _ eouwansesy A371end/abw juod _
I 0°0 0°0 [[6*5 ! €79 z ot _ G°0T 2°S ! 0°€T 972 | 801330 108ford _
_ 0°0 0°0 ! 0°6z z'ze _ Z°8 €1 _ 7L 9°€ _ (AN [¢ _ UOTIPPTTRA ¥ UOTIROTITIBA _
! 00 00 _ 0°€ €2 ! zZ°s 9°8 _ L°S 8°Z I L€ 8°0 _ buyuuerg 3ser _
_ 0°0 0°0 _ 0°8¢ 1°62 _ §°96 Z2°26 _ Z°€L S°9 _ 0°g 01 _ butumeiborg I
! 0°0 00 ! 0°S 8°t _ 0°8 0°€1 _ 0"ty 1°02 ! FARS S 24 3 _ ubyseq 3onpoid !
_ 0°0 0'0 _ Gz 6°1 _ o'y 5°9 _ g*2t 1°9 _ $°SY Z°6 _ gesATeuy sijusmesTnbey _
! (s) BYIUOW W _ (%) BYIUOW W | (%) BUIUOW W _ {a) SYIUOW W _ (%) SYIUOW W _ |
_ BOURUBIUTRK “ 188, 9 3evibsijur “ putmmezboxgd _ ubyseq aonpoag _ sjuwbey % sueryq _ ALIAIIOVY _
_ 8UYIUOW UPW £°88Z = 430333 u:mﬁmwAm>wn 1onpo1d |
| |
frewwng indino TAOW.LSOO OWODO0D VAV ‘IPPON Suneuwnsy

Estimating Model: SoftCost Ada Project Summary Report
PROJECT INFORMATION

Project name : PMTRADE

Estimate date and time : 01/16/92 09:16 am

Version : pmtrade - final

Start date : 01/30/92

Number of Subprojects : 0

CALIBRATION COEFFICIENTS

Productivity multiplier (A) : 1.420
Schedule multiplier (B) : 3.000
Effort exponent (alpha) : 1.200
Schedule exponent (beta) : 0.400
Base effort constant (gamma) 2.600
Work hours/person-month : 160.0

SIZING SUBMODEL WEIGHTING FACTORS

New Ada Components : 1.000

Reused Ada Components : 0.200

Modified Ada Components : 0.300

New Other Components : 1.000

Reused Other Components : 0.250

Modified Other Components 0.400
Effective Produc- Average Conlfi-
Size Duration Effort tivity Staff dence
(KSLOC/FP) (months) (pm) (SLOC/pm) (persons) (%)

PMTRADE 50.6 333 410.0 132.0 12.3 54.6

Estimating Model: SoftCost Ada

PMTRADE PROJECT FACTORS
Type of Software Simulation
System Architecture Loosely-coupled
Number of Organizations Involved S
Organizational Interface Complexity High
Staff Resource Availability Nominal
Computer Resource Availability Nominal
Security Requirements Low
PMTRADE PROCESS FACTORS
Degree of Standardization Very High
Scope of Support Low
Use of Modern Software Mcthods Nominal
Use of Peer Reviews Very High
Use of Software Tools/Environment Low
Software Tool/Environment Stability Very High
PMTRADE PRODUCT FACTORS
Ada Usage Factor High
Product Complexity High
Requirements Volatility Nominal
Degree of Optimization Low
Degree of Real-Time High
Reuse Benefits Nominal
Reuse Costs Low
Database Size Low
PMTRADE PERSONNEL FACTORS
Number of Ada Projects Completed 0
Analyst Capability High
Applications Experience Nominal
Ada Environment Experience Very Low
Ada Language Experience Low
Ada Methodology Experience High
Team Capability Very High
KILO-LINES OF SOURCE CODE MOST
PMTRADE MAX LIKELY
New Ada Components 42.1 421
Reused Ada Components 6.2 6.2
Modified Ada Components 30 30
New Other Components 7.0 7.0
Reused Other Components 0.1 0.1
Modified Other Components 0.1 0.1

Total effective size : 50.7 KSLOC Size variance: 0.0 KSLOC

F-7

(1.300)

(1.000)
(1.000)
(0.950)

(1.290)
(0.950)

(1.650)

(1.080)
(1.160)
(1.000)
(0.910)
(1.110)

(0.940)

(0.890)
(1.000)
(1.250)
(1.190)
(0.890)
(0.850)

MIN
42.1
6.2
3.0
7.0
0.1
0.1

Project Summary Report

WEIGHTED
42.1

0.7

0.9

7.0

0.0

0.0

Estimating Model: SoftCost Ada Resource Allocation Summary (Labor Hours)

ADA OBJECT-ORIENTED PARADIGM

SW Development SW Management SCM SQE
Life Cycle Phases Effort Effort Effort Effort
System Reqts Analysis/Design 6232.0 623.2 3116 3116
SW Requirements Analysis 12464.0 1246.4 467.4 623.2
SW Preliminary Design 9348.0 934.8 467.4 934.8
SW Detailed Design 9348.0 934.8 623.2 934.8
Coding and CSU Testing 9348.0 934.8 623.2 934.8
CSC Integration & Testing 15580.0 1558.0 934.8 1246.4
CSCI Testing 6232.0 623.2 623.2 623.2
System Integration & Testing 18696.0 1869.6 3116 623.2
TOTALS 872480 872438 43624 62320

F-8

WeyD L3dd

< ~N N

-

|
68NVILLZ 082 _ 68NVLLE 082
6BNVILZ 082 . 668NVLLE 082
68NYLLZ 082 | 68NVLLZ 082
88ddsLZ 002 _ 868438L 002
8849542 002 | 884ISLC 002
88d3dsLz 002 _ 868438LT 002
884dveZ 001 _ 884Ydv¥e8Z 001
g8YVWIT L9 _ 8BUVHIT L9
88d3dsLz 00z | 86843aSLE 002
883dveZ 001 _ 994dveZ 001
BBUVWIT LS _ BOYWWIT L9
8943SLZ 00C _ 889NVIZ 08T
88MdvVIT LB _ 8UVWIT (L9
8943sLZ 002 _ 884dsLZ 002
884d8LZ 002 _ 88d3sLZ 002
885N¥9Z 081 ! 8BNNCLT £E1
880NV9Z 08T | 885N¥9Z 081
890N¥9Z 091 _ 88TINCTT L%l
a89onNv9z 081 _ 88oNv9zZ 081
889NVIZ 091 _ 88ON¥9Z 081
88YVYWIT L9 _ BOHYWIT L9
8BUVHIT L9 _ 8BHVWIT (9
F9AVWIT L9 _ BBUYWIT L9
803410 0 _ 1823410 0
BRYVWIT L9 _ 8BUVWIT L9
4823010 O _ L82d410 O
88UVWIT L9 _ BBUYWIT L9
(923010 O _ L823AT0 O
BEYVWIT L9 _ BOMVWIT (9
BOUVWIT L9 _ 8AUYWIT L9
8883Jd6T £G _ 8883461 €§
88494461 €S _ 8843361 €G
gggddel €S _ 86493461 €6
88€3I6T €S _ 8863461 €§
BBNYLOZ € ! 88NVL0Z £f
8ONVCIT (2 _ BBNVLIT L2
88NYLIT (L2 _ 88NVLIT L2
L823d10 O _ 1803410 0O
(823010 O n L803010 0
awva Ava : rva Ava
dINT ATavd
HSINId

i
geaas.z 00z | gedssiz ooz |
@edasiz 00z | geasscz ooz |
geasscz 00z | geawsiz ooz |
eedas.z 00z | gedascz ooz |
geasscz 00z | geasscz ooz |
gedavez 001 | geMavez oot |
gowwwil 9 | sewwwrt (o |
gewvWIl (9 | gewwwit 9 |
gevavez 001 | eguavez oot |
oBUWWIT 19 | pewwvWIl 19 |
gouvWIl (9 | gewwwil ro |
gouavit e | sewwwit .9 |
gouavil r8 | mewwwir Lo |
geasscz 00z | geasscz ooz !
geonvez o8t | sesnvez oer |
geavWel €11 | gowewir (o |
goNWWIT (9 | eeuwwit (o |
geuavez 001 | sewwwit o |
goNwWil (9 | sewwwrr o |
geuvWit (9 | gewwwtt Lo |
poweWtt 29 | sewwwti o |
geuvWit 9 | gewwwit o |
1803010 0 | Lgomato o _
1803010 © [gomato o _
£8D3AT0 0 | Leomato o
(803010 © | Leomato o
1823010 0 | Leomato o |
1853010 0 | Lgomato o _
powvWll L9 | gewwwir 9 |
geaadel cc | pemaser €5 |
eNvroz e | sewvroz cc |
gaNvroz ¢ | eenvroz ¢ |
goNvroz £t | senvroz e |
genvroz cf | senwroz ef |
ponvrit sz | eewvett iz |
1803010 0 | ,gozato o |
1853010 © | Leogato o _
1823410 0 | Lgagato o _
(803010 © “ 1823G10 0 "

sgva iva | smva iva |
N1 ATV _
9V _

............... e

SHINOW €€

[
o

.
Q0w o
0

.
o
<]

.

COWVWOVVWOOQQO™mMOO

s s e s s
o~ N N NN N e

QOO VWU~ O0OQOOMOOWLOWVWOWOO

|
uZOmB<!D& SHINOK-NOSY3d 0

dls d013a3aq
{s)adr do1aa3a
(s)aas do13ada

£ SYSVL INIWJOTIAZA MS

3EVH4A NOIS3IA TIHd MS
Z SNOIIVNIVAE LONANOD
o04d 3D 40713A3A

Z sisvl 30s
Z XYVMEIT MS JLVHI4O
D0Hd WO dO13A3Q

Z SABYL WOS
Z SMAITAZY 1ONANOD

Z SNSVL INTWIOYNVH MS
Q4LATIWOD ¥SS
¥SS IONANOD
ONINIVHL LONANOD
348 XQVIY/IHIN0OV
STVNNVW 1384 d0T3A3a
(s)sy1 ao13aaa
{s)sys do13A3Q

Z SASVL INIWAOTIAZA MS

4SVHd SISATVNY S1034 MS
NY'1d 30 Fuvaid

1 SNSYL 30s
NV1d WO F¥VdIUd

1 SMSVYL WOS
) das Fyvdsud

T SHSVL INIWIOVNVH MS
QdLI'TdWOD HAS

Has
A3Q dls
(s)sd1 13ud
(s)s¥s 1344
A3Q agss

L¥0ddns
1y0ddns
d0T3A30
d0T3AIa
Ldoddans

WS 1Hoddns
A3Q adO LHOddns
A3d SS J¥Oddns

T SASVLI INIWJOTIAIA MS

dSVAd NOSA/SATUNV LOTM SAS

oty 380433

. « e
N ']
~

~ NM N O~
.

o e
.

NN ANNNNN

-

.~
~N

LS8 2§
vl

1°e° 1
€1

-
~N
-

Z°1

.

NN N O~SD0
.

L R I I I R)
.

LR I I e B I R I

-

epY 150D1J0S [9po Funewnsg

| |
€1 _ 06DNV30 9%9 _ o61INCLT €€9 _ O6NYLLT €18 _ 68034LZ 00§ ~ ooty _ zUeet _ (s)als 4o1aAsq | z°1°9
0 J 06DONV30 99 ! 069N¥90 999 _ 68030LZ 00S ! 6603ALC 00S | 0 P6€T | S 901 | MS LS3AL % INI _ T°1°9
0 _ 68034LZ 00§ _ 6803QLZ 00§ _ 668030LZ 00% _ 6803ALZ 00§ _ 0°0 _ 0°0 I 9 SHSYL ILNAWJOTHAAQ MS _ 1°9
0 ! 68D3ALZ 00§ ! 68034LZ 00§ _ 68J3ALT 00§ _ 6803ALZ 00S ! 00 _ 0°0 _ SSVYHd ONILS3L ¥ INI OBD _ ‘9
0 _ 68034LZ 009 | 6823ALT 00§ _ 681InCLT 00¥ _ 68'10LLE 00% _ 0"ezt _ 6°66 _ S SNOIIVNTVYAT LONANOD _ 1°%°S
0 ! 681NLLZ 00F _ 687InLLZ 00Y _ 68 INCLT 00V ! 681InrLz oot | 0°0 _ g0 | S SNSVL 30s _ s
0 _ 6808dLC 00§ _ 6803QLZ 00§ _ 68INCLE OO0F | 6810LLT 00¥ _ 0°z8 _ 6°66 _ S XHWNAIT MS 3LV¥Ad0 _ 1°¢°6
0 _ 68INCLT 0OV I 6810LLZ 00Y _ 681INLLZ 00V _ 68InCLe 00% _ 0°0 ! 0°0 _ G SMEVL WIS _ [k1
[X4 _ 68034LZ 00§ _ 68AONST ELY _ 6843890 9TV _ 681nrLz oo _ 0-gzZ1 _ £ €L _ G SMIIAZY LONAQNOD ! 1°Z°¢
(A4 _ 6843590 92v _ 68INLLT Q0P _ 6843890 92Z¥ | 68I0rLZ 0OV _ 00 _ 0°0 _ S SIUSVLI LNAWIOUNVK MS _ (AR
0 ! 6803dLZ 006 ! 66803dLC Q0§ ! 68030LZ 00§ | 6823ALZ 00% _ 00 | 0°0 | G3LI'TAWOD HIN _ ?°1°S
0 ! 6823ALC 009 _ 6803QLZ 00§ _ 68A0NBZ 08Y _ 6BAONGZ 0BV _ 0°v91 _ 0°0Z [HLO LOOGNOD _ €°1°%
0 _ 68AONBZ 09V ! 68AONBZ 00F ! 608InrLT 00% ! 66°100L2 00F ! 0°9¥Z _ 6°6L _ S SMIIASY ¥33d LONANOD | z°1°s
0 ! 68AONBZ 0BV _ 68AONBZ 08Y _ 68INLLZ 00F _ 68INLLE 00V _ 0°0z8 _ 6°6L ! SLINN LS3L ¥ 3QOD [1°1°%
0 _ 687INLLZ 0OV _ 68°INCLZ 00F _ 681INCLZ 00P _ 6e8IncLT oov | 0°0 | 0°0 _ G BNSVI INIGWAOTIARG MF _ 1°s
0 _ 681INCLE O0Y _ 68'1nrLe 00Y _ 68InNCLZ O00F _ 69'1nrLZ OOV _ 00 _ 0°0 _ 3SVHd ONILS3L NSO ¥ HNIAOD ! °s
0 _ 68INCLT 00V _ 6871ACLZ 00P _ 68UVHWIO 00€ _ 60HVWIO 00€ _ 0°¢€2Z1 _ 6°66 _ ¥ SNOILVATVAY IONANOD ! [O A J
(¢} ! 68HYWIO 00€ | 684VWIO 00F _ 68¥YWIO 00t _ 68HVWIO 00t _ 0°0 ! 00 _ ¥ sASVL 30s _ ry
o} _ 681INCLZ 00 _ 681IN0LZ OO0V _ 68YVWIO 00¢ _ 68HVHWIO 00F _ 0°28 _ 6°66 _ v XYVYE1T M5 ALVEILO _ 1€
0 ! 68HYHIO 00€ J 66HYWIO QOC _ 68AVNIO 00F _ S8YVHID DDE | 0°0 _ 0°0 | ¥ SISV WOS _ €y
LT | 69'INLLT 00V _ 68NNCIT ELE _ 69ddVL0 92t _ 6BYVWIO 00 _ 0-€zZt _ €°EL _ v SMIIAIY LONANOD [LA 4
Lz ! 68¥dVL0 9Z¢ ! 68HVWIO 00€ | 684dVLO 9ZC ! 68UVYWIO O0O0f ! 0 0 _ 0°0 _ b SASVL INIWIADVNVR MS _ []
0 | 68INCLZ 00V | 6871NCLZ 00% _ 6810rLZ 00V | 68InLLT 00V _ 0°0 _ 0°0 _ qaLITdROD ¥AD _ 9 1Y
0 ! 68TNCLT 00OV [68INCLZ 00% ! 68NNLLT 08€ ! 68BNNLLZ 08 ! 0°9%Z ! 0°0Z ! ¥dO IONGNOD _ S 1P
£1 _ 68BNNLLZ 08F _ 68NNLLO 99C _ 68UVWOZ E1€ _ 68YVHIO 00¢ _ 0°v91 _ 9°99 _ ¥ SMIIATY ¥33d4 LONANOCD | | AR S4
0 | 68NNLLZ 0BE _ 68NNLLZ 08E ! 68YVYWIO 00€ ! 68HVYWIO 00€ ! 0°9%2 ! 6°6L | (5)4s¥d 1S3l dOTdA3A ! €re
0 _ 68NNCLT 0BE _ 68NNLLE 08T _ 69YVWIO 00¢f I 68UVWIO 00¢ | 0°¢91 _ 6°6L _ (s)aar TIviaa _ [08 4
0 _ 68BNNLCLZ 08 _ 68NNCLZ 08E _ 68YVWIO 00€ _ 68¥VWIO 00F _ 0-01? [6°6L [(g)aas TIviaq ! L 0 B 4
0 _ 68AVWIO 00¢ _ 68YVYWIO 00f _ 68UYWIC (Of | G68AVWIO 00 _ 0°0 _ 0°0 _ ¢ SNSVI INIWJOTIAZA MS _ 1y
(o} _ 6BHVWIO 00t _ 69HVWIO 00€ _ 68UYHWI0 00¢€ _ 6BYYWIO 00¢ _ 0°0 [0'o _ NSVHd NOIS3J QITIVLIEQ MS [4
0 _ 68UVWIO 00¢F _ 69HVWIO 00€ _ 86843ISLZ 002 ! 88d3aSLZ 00T ! g€t _ 6°66 _ € SNOILVNTVA3 IONGNOD _ I°9°¢€
0 _ 88d43sLZ 002 _ 88d43sLZ 002 _ 88ddsLZ 002 _ 88435LZ 002 _ 0°0 _ 0°0 _ £ SNSVL ads _ vt
0 _ 69¥YWIO 00t “ 68HVWIO 00T ! 8843sLZ 002 ! 86843asLZ 002 _ S'19 ! 6°66 _ € AYWEIT M5 ILVHILO ! 1°c°¢
[| 89d35LZ 002 _ 88d3sLZ 002 | 8843SLZ 002 | 88d4asLZ 002 _ 00 _ 0°0 _ € SASYL WOS _ €°€
[X4 _ 68¥VWIO 00¢ _ 68NVI8T £LZ _ 88AONLO 922 ! 8843SLZ 00T _ 0-gz1 _ € eL _ € SMIIAI ILOAANOD ! 1°T°¢
(X4 _ 86AONLO 922 I B8dasLZ Q02 _ 88AONLDO 922 _ g8dasLz 002 | 0°0 | 0'0 ! £ SASVL INIWAOVNYW MS _ Z €
0 _ 68UVWIO 00€ _ 68UVWIO 00¢ _ 69UVHI0 00€ _ 68UVWIO 00€ _ 0°0 _ 0°0 _ QILITIWOD ¥Ad _ 6 1°¢€
0 “ 684VYWIO 00f “ 6BYVYWIO 00t “ 68NVCLZ 082 “ 68NVYLLZ 082 “ 0°9%Z “ 0°02 “ Had LONANOD “ L AR ¥
SAvd _ aiva Ava : awna Avqg _ c8A {d AvaQ : arLva ANda ! ! !
3NIT ! ALVT ATdvV3 _ oA 41 ATavd _ 140443 _ ¥na _ ASVL _ 2000
ADWTS _ HSINIJ [LUVILS _ _ _ !
...... Y S BN SN PN B SOt PN
! : : mIBZOP € €€ uonatmam mmazot»bomzmm O»oﬁq (A (e L1 Na<¢abm 2303 rodd

wey) Lyad BPY 1S0D1JOS [9pON Junewrnisg

Heyd 1uad

- <

-

OOOgOOOOOOOQOOOO"“"‘QOOOOOOOOOOOOOOOO
~N

169NVEZ 668
169N¥ECZ 668
0623QLT E€E€L
160NVEZ 668
0603ALT €L
1691VEZ 668
1643461 tLL
160NVEZ 660
169NVYEZ 668
1690VEZ 668
16TNC80 998
0603QLT €€L
0623aL1T €€L
0623aLl €fL
06d3s60 999
06J3aLl €eL
06dass0 999
0603aLt tfL
06d3asyZ 6.9
06034LT €EL
06230LT €fL
06AONYPT €1L
O6AONT €1L
06AQNPT €1L
0612091 €69
0643860 999
0643860 999
0643850 999
68234LZ 006
0643860 999
68334LZ 00S
06d3ss0 999
O6NYLSZ 616
0643SS0 999
0643850 999

160NVEZ 668
169N¥EZ 668
06030GLT LfL
160NVEZ 668
0603QLT tCEL
T6NNLSZ 6468
0603ALT €L
169N¥EL 668
169nYEZ 668
169NVEZ 668
16INC80 998
0623aLT1 €eL
06234LT teL
06030LT1 fEL
0643850 999
06030LT t€L
0643550 999
06AONIZ 61¢L
0643850 999
0603ALT €£€L
06030LT €€
O6AONYT €1¢
O6AONDPT ETL
O6AONPT €1¢
0610091 €69
0643560 999
0643550 999
06d43S60 999
68230LZ 009
0643560 999
68234LC 00§
065N¥90 9v9
68030LZ 00§
0643550 999
0643850 999

1-d

160nvez 668 | 16onvez 668 ! 0°0
0603aL1 teL _ 06234LT €EL _ 0°Ze
0623ALT fEL _ 0603ALT €€L _ 0°0
0623ALT €EL _ 0603ALT €€L _ oty
0623aLT €L _ 0623aLy €L _ 0'0
168d4ST ELL _ 0623ALT €fL _ 0°9vz
16qGddst €LL _ 06230qLT €€L ! 0°0
169NVEZ 668 ! 160NYEZ 668 _ 0°0
1671Nr80 998 _ T6Inra0 998 | 0°Z9
16IAr80 9989 _ 161Nrs0 998 _ 0°8Z¢
0r *3aLl teL _ 0623ALT €EL _ 0°0502
0603dLT E€L _ 06030LT t€tL | 0°0
06230LT €EL _ 06030LT €L ! 0°0
0643550 999 _ 0643860 999 _ 0°ze
0643550 999 ! 06d43ss0 999 ! 0°0
0643550 999 _ 0643590 999 . 0°¢z8
0643560 999 _ 0643890 999 _ 0°0
06d3SvZ 6.9 | 06d435s0 999 _ 0°ze
0643S¥Z 6.9 ! 0643550 999 _ 0°0
0603dLT t€L _ 06030LT €L _ 0°0
O6AONPT ETL ! O6AONYT €1L _ 0°2Z8
0643550 999 ! 06d3sS0 999 _ 0 P91
0643dSG0 999 _ 0643550 999 _ 07991
0610091 €69 _ 0643091 £69 _ 0°p91
0643860 999 _ 06d43s50 999 _ 0°9vez
0643560 999 _ 0643560 999 ! 0°0
0643dSG0 999 _ 0643550 999 ! 0°0
68040LZ 006 | 6823dLZ 006 _ 0°%91
68034LZ 00§ ! 69030LZ 0069 ! 0°0
6823ALZ 006G _ 6803ALZ 00S _ 0o ezt
68230LZ 009 _ 68330LZ 00§ _ 0°0
06NYLSZ 616 _ 68030.LZ 00S _ 0°502
06NVISZ 616G _ 6823d.Z 00S _ 0°0
0644850 999 _ 0643850 999 _ 0°0
06ONN¥90 9%9 " 065NY90 9v9 “ 0 9vZ
aLva Ava ! arva Ava _
24 #1 ATHV3 ! 240443
zvas "
............... U
m:EzOb €° et uzOHatzbm SHINOW-

HBINIA
1°v 8
v'e
1°¢€°8
[}
1°Cc'8
z°8

(=]

9 SNOIIVNTVAE LONANOD
g8 SYSVL 308
8 AyvyEll M§ 3IV¥EdO
9 SNSVL WOS
8 SMIIATY LONANOJD
8 SHSVL INIWIDYNYW NS
QALITINOD ¥Od/¥Dd WALSAS
¥Dd/¥d4 WALSAS I¥Oddns
INITISVE IONQoud IWvdIud
431 WILSAS I¥0oddns
8 SYUSVLI INAWAOTIAIQ M8
ISVHd 1S3L 9 INI WALSAS
L SNOIINNTYAT LONANOD
L SMSYL A0S
¢t KMVNEIT MS IIVHIA0
L SISVL WIS
L SMIIATE LONANOD
L SASVI INTWIOVNVW MS
Q3LATAWOD YOd/¥0d MS
¥2d/V¥23 MS JONANOD
SINIWND0A S%0 d0OTIA3A
(s)sds dO1dA3a
(s)41s dOT3A3C
3 ¥ 1 MS 1ONANOD
L SASVI INTWAOTIAIA MS
3ISVHd ONILSAL 1080
9 SNOILVNTVAT IDNANOD
9 SXSVL 30§
9 XYVHEIT MS ILVHIdO
9 SSVL WOS
9 SMITATY LONANOD
9 SHSVI INIWIOVNVW MS
g3ALITIWOD HYL
¥l LONANoD

L]
-]
-

L T
N 0
- e

"N

O -
A
‘1°8
‘18

am.
-

1°8
i

L 88 A
| ')
1°€°L

]

0

WO OoOO0O0OMOVWOWOWSOMM™mMOOWOWOWOo

. s e
9N

.

.

QOO DVOWVWOVWOoOOWO
0 NN
-

0
-

.

-
-

)
-t
.
~
~

.

QO CH O NONOOVWVWOUWOOOMOWVLOLOONMMOONMON OO
.

4
bommmm o_o~v 4804343 JAVEING 1 1D3r0ud

epY 1S0D1OS 12pOW Sunewnsy

Estimating Model: SASET

Model Input Summary

IITRIZ END —

!
{
!
!
I

xxxxxx Tiaer] Distribution **#**xx

Title Budget Schedule Value .
} Class of Software 1.000 5.950 Ground
' Hardware System Type 1.120 1.120 Distributed
| Pct of Memory Utilized 0.950 0.990 50 % l'
! S W Configuration Items 1.000 1.000 2
. Develcopment Locations 1.000 1.000 1
" Customer Locations 1.020 1.020 3
" Workstation Types 1.010 1.010 2
! Primary Software Language 1.050 1.025 Ada
I Pct of Micro-Code 1.030 1.030 5 3
,’ Security Level 1.000 1.000 1 '
i
” Software Budget Mult:iplier 1.18547
. Software Schedule Multiplier 1.20597 '
ﬁ Budget Data Factor 1.000
i Schedule Data Factor 1.000
sq |
Press any key to continue...
— —— IITRI2.END ———
H Direct Input Mode for SLOC
! High Order Language Assembly Language
" Software Type New Mod Rehost New Med Rehecst
1 . . ;
i :
! Systems ' 0 0 0 . 0 8 2
" Application 32022 1553 3267 | 0 Q X
" Support j 10501 1535 0 6545 0
" Security ' 0 0 0 | 3 0
| Data Statements | 42523 3088 2267 6545 > "
i ; !
' : o e ———— ‘
ﬁ 0 ' Total 48878 | Total 6345
L H i
|

High Order Language

Assembly Language

| l

” , New Mod Rehost | New Hod Rehost
i/ New HOL Equivalent . - : ! L

“ 42323 2234 327 2182 By 2
ﬂ Total 17286 | Total 45104 | Total 2182
1L . L

Arrow keys, TAB - change input field. F38 - help. INS - save.

F-12

Estimating Model: SASET Model Input Summary
IITRIZ2.END

**xk*x% Tier 3 Distribution *xx=x=%

Title Budget Schedule T“omplexity
|
System Requirements 1.000 1.000 Avarage
Software Regquirsments 1.200 1.000 Average
Software Documentation 1.030 1.025 Very Complex
Travel Requirements 1.020 1.010 Compliex
Man Interaction 1.020 1.210 Complex
Timing and Criticality 1.020 1.010 Complex
Software Testabil:ity 1.920 1.020 Cemplex
Hardware Constraints 0.900 0.990 Simp:i2
Hardware Experience 1.020 1.020 Complex
Scftware Experience L.020 1.020 Complax
Software Interfaces L.000 1.000 Averajge
Development Facilities 2.950 0.990 Simpi2
Development vs Host Sys 1.200 1.000 Average
Technology Impacts 1.200 1.000 Ararage
Press any key to continu=.
. IITPI. ENT oo
"r=« Tier 3 Distribution ~#*x*%%
Title Budget Schedule Complaxity
CCTS Software 1.220 1.020 Complex
Development Team 1.220 2.000 Averags
Embedded Development Sys 0.939 2.990 S:mple
Scftware Development Tools 1.020 1.02% CTcmplex
Personnel Resources 1.000 1,230 Average
Programming Language 1.030 $.023 YVery Compile2x
Software Systems Budget Multiplier 1.72924
Software Systems Schedule Multiplier 1.159623

Press any key to continue..

Estimating Model: SASET Summary of Software Development Effort - CDR Specified
—4 IITRI.END

Summary of Software Development Effort by Organizaticn . Phase
152 ManHours / ManMonth)

Phase Systems Software Test Quality Total
Systems Regts 18.53 32.57 3.84 2.47 57042
Regts Allocation 8.35 19.72 2.33 1.49 3L.an
Scftware Reqgts 11.88 38.33 4.31 2.90 7042
Preliminary Design 7.22 21.560 3.45 2.39 14.06
Detailed Design 12.06 70.15 8.18 5.31 32,72
Code 3.84 62.04 9.25 4.70 84.83
Checkout 1.47 2.36 6.39 2.45 45.58
Unit Testing 5.59 39.76 10.36 3.01 58.713
Formal /Phys Qual Test 4.18 29.10 10.19 2.20 4z.58
Systems Test & Integ g9.31 70.71 38.60 5.36 122.38
Total 30.44 426.35 96.90 22.30 -345.68

ress any key to continue...

Summary of Scftware Development Effort by Crganization & Review
(152 ManHours ° ManMonth)

Review Systems Software Test Quality Total
Sys Planning Review 3.37 5.22 0.38 0.40 9.:27
Sys Requirements Rev 19.51 37.06 4.42 2.81 53.39
Sys Design Review 14.11 11.76 1.76 3.16 63.80
Preliminary Design Rev 8.97 38.19 4.18 2.89 54.23
Critical Design Review 12.06 70.14 3.19 5.31 95.7¢0C
i3t Test Readiness Rev 13.33 91,14 15.57 7.15 130.30
2nd Test Readiness Rev 5.59 39.76 10.36 3.01 58.73
Func,'Phys Config Audit 5.89 41.04 15.20 3.11 65.23
Acceptance Review 7.59 58.73 33.63 4.45 104.47
Total 30.44 426.35 96.990 32.30 645.972

ress any key to continue...

Estimating Model: SASET Summary of Manloading - CDR Specified

4+ IITRI.END
Summary of Manloading by Orgarization(Man Months)

——=

Total Engineering (646.0 ™M
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1987 12.9
1988 12.0 12.2 12.4 12.8 13.2 13.7 14.1 14.6 15.1 15.5 15.9 16.2
1989 16.6 16.8 17.0 7.1 7.2 17.2 17.2 17.1 17.0 16.8 16.5 16.3
1990 16.0 15.6 15.3 14.9 14.6 14.2 13.8 13.5 13.2 12.9 12.6 12.4
1991 12.1 12.0 11.9 11.8 11.7 11.7 11.7 11.8

‘ress any key to continue...

Estimating Model: SASET

—
{

! (152 ManHours / ManMonth)

IITRIZ.END

Summary of Software Development Effort - CDR Not Specified

! Summary of Software Development Effort by Organization & Phase

e ——

: Phase Systems Software Test Quality Total
| systems Regts 16.69 29.28 3.47 2.22 51.67
! Regts Allocation 7.53 17.71 2.12 1.34 28.70
L Software Reqts 10.69 34.45 3.92 2.61 51.67
i Preliminary Design 6.48 28.42 3.13 2.15 10.19
i Detailed Design 10.79 63.13 7.41 4.78 86.11
! Code 7.70 54.62 8.17 4.14 74.63
| Checkout 3.89 28.50 5.64 2.16 10.19
I Unit Testing 4.86 35.01 9.14 2.65% 51.67
: Formal/Phys Qual Test 3.63 25.61 9.00 1.94 40.19
I Systems Test & Integ 8.10 62.16 34.11 4.71 109.07
!

} Total 80.37 378.89 86.11 28.70 574.08
I

i

L

Press any key to continue...

— = IITRI2.END =——

!

i

: Summary of Software Development Effort by Organization & Review

n (152 ManHours .~ ManMonth)

I

j Review Systems Software Test Quality Total

| Sys Planning Review 3.03 4.70 0.53 0.36 8.61
Sys Requirements Rev 17.58 33.30 4.00 2.52 57.41

| Sys Design Review 12.71 37.52 4.33 2.84 57.41
Preliminary Design Rev 8.05 34.35 3.79 2.60 48.80

‘ Critical Design Review 10.79 63.12 7.41 4.78 86.11
lst Test Readiness Rev 11.61 83.15 13.76 6.30 114.82
2nd Test Readiness Rev 4.86 35.00 9.15 2.65 51.67
Func/Phys Config Audit 5.13 36.12 13.42 2.74 57.41
Acceptance Review 6.60 51.61 29.72 3.91 91.85
Total 80.37 378.89 86.11 28.70 574.08

L

Press any key to continue..

Estimating Model: SASET

Summary of Manloading - CDR Not Specified

——4 IITRI2.END
Summary of Manloading by Organization(Man Months)

Il Total Engineering { 574.1 ¥M

| Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1987 17.1
1988 17.3 17.9 18.8 19.9 21.0 22.0 22.9 3.7 24.2 24.5 24.6 24.5
1989 24.2 23.7 23.1 .22.4 21.6 20.7 19.9 9.1 18.4 17.8 17.3 17.0
1990 16.8 16.7 16.8

1

Press any key to continue...

Estimating Model: SASET Summary of Software Schedule

{ IITRI.END j——

!
H
1

l:

Summary of Software Schedule by Phase !
(Calendar Months) !
(CDR specified) (CDR Not Specified) "
ser Schedule Derived Schedule g
Month/Year Month/Year ‘
Phase From To From To "
Systems Requirements 12/1987 - 4,1988 12/1987 - 2,/1988 !
Requirements Allocation 4/1988 - 17,1988 2,/1988 - 4,1988 i
Software Requirements 7,1988 - 11,1988 4,/1988 - 6,1988 '
Preliminary Design 8,/1988 - 2,1989 5/1988 - 8,/1988 [
Detailed Design 2/1989 - 7,/1989 8/1988 - 12,/1988 '
Code 6/1989 - 4,/1990 11,/1988 - 5/1989 L
Checkout 10/1989 - 8/1990 1,/1989 - 7,1989 |
Unit Testing 1/1990 - 10/1990 4,/1989 - 99,1989
PQT / FQT, Integration 4/1990 - 1,/1991 5/1989 - 11,/1989
Systems Test & Integration 1/1991 - 8/1991 11,/1989 - 3,1990

Press any key to continue...

4 IITRI.END ——

1

Summary of Software Schedule by Review '
(Calendar Months) }
(CDR Specified) (CDR Not Specified) !
User Schedule Derived Schedule ﬁ
Review Month/Year Month/Year
Systems Planning Review 12/1987 12,1987
Systems Requirements Review 4,/1988 2,1988
System Design Review 9,/1988 5/1988 ‘
Preliminary Design Review 12/1988 7/1988
Critical Design Review 7/1989 12,1988
1st Test Readiness Review 4/1990 5/1989
2nd Test Readiness Review 8/1990 8,/1989
Func/Phys Configuration Audits 1/1991 11/1989
Acceptance Review 8/1991 3/1990
i
|
Press any key to continue... .
F-18 II

APPENDIX G
ADAMAT REPORT
G

ADAMAT Results

Date: 12-30-1991
DUAO: [USER.ADAMAT.UH1
Score Good Total

0.44 43650 98225
0.54 87611 161623
0.96 487577 508938
0.86 548183 635673
41354

189246

63800

62528

1272

1270

2

107530

106956

574

17916

41354

37267

24129

13138

3627

2241

1386

460

0.65 11578 17789
0.39 2887 7345
.31 1331 4252

.50 444 891
0.26 887 3361
0.48 1392 2882
0.30 129 428
0.51 1263 2454
0.71 77 108
0 o}

0.92 87 95
0.00 o 8
0.83 8676 10359
0 0

[s}

0

0

0

0.93 8676 10399
0.90 903 998

0.82 3740 4535
0.83 4033 4866
0.123 15 45
0.33 15 45
0.98 448994 456261
0.97 162890 167374

7
0.97 104729 107567
0.96 58161 60400
0.98 37737 38333
0.99 33569 33867
0.93 4168 4466
0.99 139968 141366

T

page: 1
ATA]APPLICATION.REP_COM;1
Level------- Metric Name
l---roeeem- RELIABILITY
lo-mmommem e~ MAINTAINABILITY
lommmmrmemen PORTABILITY
l---mommmme- ALL CRITERIA

---------- sLoC
--~ PHYSICAL_LINES
--~ PHYSICAL ADA_LINES
--- ADA_UNCOMMENTED_LINES
....... ADA_COMMENTED_LINES
------ COMMENTED_LINES WITH_TEXT
------ COMMENTED_LINES_BLANK
-------- PHYSICAL COMMENT LINES
....... COMMENT LINES_WITH_TEXT
....... COMMENT_LINES BLANK
-------- PHYSICAL BLANK LINES
......... LOGICAL LINES
-------- STATEMENTS
--- EXECUTABLE_STATEMENTS
------- DECLARATIVE_STATEMENTS
........ CONTEXT CLAUSES
....... WITH CLAUSES
§--emnem USE_CLAUSES
4o PRAGMAS
. ANOMALY MANAGEMENT
: PP PREVENTION
femmmmmme APPLICATIVE DECLARATIONS
§ecmmmm APPLICATIVE DECL SPECIFICATION
§emmenn APPLICATIVE DECL_BODY
§ommmmm e DEFAULT_INITIALIZATION
§emmmme DEFAULT_INIT_SPECIFICATION
L JR—— DEFAULT INIT BODY
fmmmm e NORMAL_LOOPS™
4mmmme e CONSTRAINED NUMERICS
P CONSTRAINED SUBTYEE
4o CONSTRAINED VARIANT RECCRDS
L P, DETECTION -
R, SUPPRESS_PRAGMA
Semocon- CONSTRAINT ERROR
--- PROGRAM_ERROR
L TP STORAGE_ERROR
TP NUMERIC_ERROR
§omcameen USER_TYPES
§ooommee USER_TYPES_FOR_PARAMETERS
Socemme- USER_TYPES_SPECIF ICATION
USER_TYPES_BODY
RECOVERY
USER_EXCEPTIONS_RAISED
 JRE INDEPENDENCE
L P I0_INDEP
P, ¥O_MISSED_CLOSE
4omccmeen NO_SYS DEP_IO
g e 10 NON MIX
k P, TASK_INDEP
4 NO_TASK_STMT
dommmmee TASK_STMT_NON_MIX

P MACH_INDEP

Application Code

ADAMAT Resuits
Date: 12-30-1991
DUAO: (USER.ADAMAT.UHL
Score Good Total
0.00 0 7
0 0
Q
0
0
o}
0
o
4
0
0
[o]
0
[¢]
1
2
0 o]
0.60 1615 2706
11
0.14 173 1219
0 Q
0.98 1442 1476
1.00 833 833
.0.76 25 33
0.96 292 308
0.96 292 308
0.99 112368 112668
0.99 5043 5101
o)
0.99 107325 107567
1.00 25985 25985
1.00 25985 25985
0.99 108399 108410
1.00 107567 107567
4
6
0.99 832 833
0
0.00 0 178
178
0.68 5490 8123
0.62 3616 5834
.69 3616 5212
0.67 887 1331
o] 0
0.85 2474 2921
0.25 211 833
0.46 44 95
0.00 0 32
0.00 [} 622
0.00 o] 622
0 0
o] 0
o] o]
0.95 1537 1611
0.95 1536 1610

page:

TATA]APPLICATION.RE?_COH;1

Metric Name

MACHARITHINDEP
PACKAGE_ARITH_INDEP
NC_MAX_INT

NO MIN_INT

NG MAX_DIGITS
NO_MAX_MANTISSA
NO_FINE_DELTA
NO_TICK

NO_INTEGER DECL
NO_SHORT INTEGER_DECL
NO_LONG_INTEGER DECL
NO_FLOAT DECL
NO_SHORT FLOAT DECL
NG_LONG_FLOAT_DECL
NO_NATURAL_DECL
NO_POSITIVE_DECL
FIXED_CLAUSE

MACEREP INDEP
NO_PRAGMA PACK
NUMERIC_CONSTANT DECL

NUMERIC TYPE DECLARATIONS

CLAUSE _. REP INDEP

NO LENGTH CLAUSE FOR_SIZE

NO LENGTH CLAUSE FOR_ _STORAGE_SIZE

NO ALIGNMENT CLAUSE FOR RECORD TYPES
NO COMPONENT _| CLAUSE FOR_ " RECORD TYPES

MACHCONE IGINDEP

NO_ADDRESS_CLAUSE _IN_DECL

NO_PRAG_SYS_PARAM
NO_REP_ATTRIBUTE
MACECODEINDEP
NO_MACH_CODE_STMT
SOFT_INDEP
NO_sYs_DEP_MOD
NO_IMPL DEP_PRAGMAS
NO_PRAGMA_INTERFACE
NON_ACCESS_TYPE
NO_IMPL_DEP_ATTRS
PHYS LIM_INDEP
COMPILER_LIMIT
MODULARITY
INFORMATION HIDING
HIDDEN INFORMATION
CONSTANTS_HID
EXCEPTIONS_HID
VARIABLES_HID

TYPES HID
SUBTYPES_HID
TASKS_BID
PRIVATE_INFCRMATION
PRIVATE TYPES
LIMITED_PRIVATE_TYPES
PRIVATE_TYPE_AND_PART

PRIVATE TYPE AND CONSTANT

PROFILE
LIMITED_SIZE_PROFILE

2

Application Code

ADAMAT Results

Date: 12-30-1991

DUAO:[USER.ADAMAT.UEI_T

Score Good Total
1.00 1 1
¢.50 337 678
0.68 232 339
0.31 135 339

Q.80 33083 41554
0.70 18974 27208
0.81 13108 16263
1.00 2917 2917
1.00 1695 1698
1.00 160 160
1.00 1062 1062
0.99 4173 4178

1.00 740 740
1.00 160 160
1.00 3273 3273
0.00 o] 5

o] Q
0.31 1254 4109
0.02 3 155
0.07 12 182

o] [¢]

0 o]
0.82 119 145
- o} 0
0.01 31 2241

0.79 1089 1386
0.94 4764 5059

0.80 367 460
0.00 0 39
0.50 87 17
0.51 20 3s
1.00 24 24

1.00 1331 1331
1.00 2912 2912

0.29 23 80
.54 5866 10945
0.83 605 729
c.98 333 339
1.00 36 36
0.67 236 354
0.88 1122 1272
0.97 144 148
1.00 32 32
0.87 946 1091
0.00 0 1

s} o]
.09 362 4109
0.01 2 155
0.03 6 182

0 0

0 v}
0.19 28 145

0 0
0.01 20 2241
0.22 306 1386

0.78 371717 48135

page: 3
ATA]APPLICATION.REP COM;1
Level------- Metric Name
4ommmmmm s SIMPLE BLOCKS
;PP COUPLING
. NO_MULTIPLE_TYPE DECLARATIONS
fememmm- NC_VARIABLE DECLARATIONS IN SPEC
2-mmmmmmme- SELF_DESCRIPTIVENESS -
R s COMMENTS
4----m--- N COMMENTS
§----n-- NCS_SPEC
6------ NCS PACKAGE SPEC
§------ NCS_TASK_SPEC
§-mmmm- NCS SUBPROG SPEC
Y NCs_BODY
[P NCS PACKAGE BODY
§------ NCS_TASK_BODY
Gommon- NCS SUBPROG BODY
6------ NCS_SUBUNIT
6--nmn- NCS BODY STUB
§amommen NCS_STATEMENTS
6----- NCS_EXIT
G-mmmm- NCS_RETURN
§-mmmmn NCS GOTO
L NCS_ABORT
G--~-n- NCS DELAY
§o-=--m NCS_TERMINATE
§--~m-- NCS_WITH
§-mmm-n NCS_USE
[T NCS_DECLARATICNS
6----=~ NCS_PRAGMA
§ommemn NCS RECORD REPRESENTATION
G---n-= NCS_ADDRESS_CLAUSE
[NCS_ALIGNMENT CLAUSE
Gmmmmmn NCS_LENGTH_CLAUSE
f-moamn NCS_CONSTANT DECL
§omommn NCS_VARIABLE DECL
f-----~ NCS ENTRY DECL
4o—mmmm N_COMMENTED
Sem-nn- NCO_SPEC
§omemmn NCO_PACKAGE_SPEC
§-=mmmn NCO TASK SPEC
6------ NCO_SUBPROG_SPEC
Semmenn- NCO_BODY
fummmm- NCO_PACKAGE_BODY
Gmmamm NCO_TASK_BODY
§-----n NCO_SUBPROG_BODY
6-mmmm NCO_SUBUNIT
6------ NCO_BODY_STUB
§ememme NCO_STATEMENTS
6-mnmnn NCO_EXIT
6------ NCO_RETURN
Grmmmmmm NCO_GOTO
6-mmmn- NCO_ABORT
6------ NCO_DELAY
6-mmmme NCO_TERMINATE
6------ NCO_WITH
Bommom- NCO USE
§omma- NCO_DECLARATIONS
G-4

Application Code

ADAMAT Results Application Code
Date: 12-30-1991 page: 4
DUAO: {USER.ADAMAT.UB1_DATA]APPLICATION.REP_COM;1
Score Good Total TLovol ------- Metric Name
0.26 118 460 ! §----=n NCO_PRAGMA
0.00 0 13 6--m-n- NCO_RECORD_REPRESENTATION
0.59 34 58 | 6=~ NCO_ADCRESS CLAUSE
0.69 9 13! 6-----~ NCO_ALIGNMENT CLAUSE
1.00 8 8 6--==nn NCO_LENGTH_CLAUSE
0.95 1258 1331) §--=nn- NCO_CONSTANT_DECL
6.80 2329 2912 | 6--=--~ NCC_VARIABLE_DECL
0.52 21 40 Gmm-mnn NCO ENTRY_DECL
0.98 14119 14346 Jocmmmmn SENTIFIER
0.98 14119 14346 doommmm o NO_PREDEFINED_WORDS
0.40 32072 80436 | 2---------- SIMPLICITY
0.83 3424 4116 Jomemmmen CODING_SIMPLICITY
0.84 3140 3725 4o SIMPLE BOOLEAN EXPRESSION
0.73 284 391 T EXPRES_TO_DO_BOOLEAN ASSIGN
0.13 4985 39502 Jommmmnem- DESIGN SIMPLICITY
0.16 954 6124 4-cmmmmne cALLS TO_PROCEDURES
0.37 150 403 4-mmmmm ARRAY TYPE EXPLICIT
0.17 95 557 L SUBTYPE_EXPLICIT
0.72 84 116 4ommmmm ARRAY RANGE_TYPE_EXPLICIT
0.11 3702 32302 4-mmmm-- DECLARATIONS CONTAIN LITERALS
0.64 23663 16818 R FLOW SIMPLICITY -
0.49 2138 4321 R BRANCH_CONSTRUCTS
0.96 1052 1091 4ommmm- SINGLE_EXIT_SUBPROGRAM
0.64 413 649 focmmmm FOR_LOCPS
0.97 1563 1610 demmmemne LEVEL_OF_NESTING_BY_ MODULE
0.83 1504 1815 4----m--- LEVEL OF_NESTING
0.95 4093 4321 docmmmm- STRUCTURED BRANCH_CONSTRUCT
0.85 3672 a32: 4-mmmmne NON_BACK_BRANCH_CGNSTRUCT
0 ol 4-e--mo-- NO LABELS
0.46 2007 4377 demecnnn DECISIONS
0 0 4ocmmmm GOTOS
0.39 4321 11093 4o BRANCH_AND_NESTING
0.91 1460 1610 4eommmmm CYCLOMATIC COMPLEXITY
0.90 1443 1610 | d-------- MULTIPLE_COND_CYCLOMATIC_COMPLEXITY
0.54 16956 31510 | 2--m----=-- SYSTEM CLARITY -
0.54 16956 31510 Jommmmmmn STYLE
0.60 5451 9131 demommn- EXPRESSION STYLE
0.87 3225 3725 R NON_NEGATED_BOOLEAN EXPRESSIONS
9.37 1605 4344 Sommman- EXPRESSIONS PARENTHESIZED
.80 521 649 ommmme- NO_WHILE_LOOPS
0.24 100 413 §ommmme- FOR LOOPS WITE TYPE
0.88 6197 7028 4o DECLARATION_STYLE
0.16 156 975 §ommmm NO_DEFAULT_MODE_PARAMETERS
0 9 Sommmmna PRIVATE_ACCESS_TYPES
0.99 5788 5800 §ommmmne SINGLE_OBJECT DECLARATION LISTS
1.00 253 253 §ommmmn- SINGLE IMPLICIT_TYPE_ ARRAY
0 0 T NO_INITIALIZATION_BY NEW
0.61 3733 6162 4-cmmmmn- NAMING_STYLE
0.00 1 650 §ommemn STRUCTURES_NAMED
0.00 1 649 6------ NAMED_LOOPS
.00 0 1 6------ NAMED BLOCKS
0.72 1643 2292 §ummomn- STRUCTURE_ENDS _WITH_NAME
1.90 1642 1642 6-==-n- MODULE_END_WITH_NAME
0.00 1 649 6-m--n- LOOP_END_WITH_NAME
0.00 0 1 6---mn- BLOCK_END_WITH_NAME
0.01 1 155 §aemonn- NAMED EXITS

ADAMAT Results

Date: 12-30-1991 page:
DUAO: [USER.ADAMAT.UHl_QA’I‘A]APPLICAT ION.REP_COM;1
Score Good Total |lLevel------- Metric Name

0.68 2088 3065 §-=-=--- NAMED AGGREGATE

9.17 15875 9189 | 4----=---" QUALIFICATION STYLE

c.00 o] 3068 == QUALIFIED_AGGREGATE

0.26 1875 6124 PER R QUA.LIFIED_SUBPROGRAH

G-6

Application Code

ADAMAT Results Support Code

Date: 12-31-1991 page: 1
DUAO: [USER.ADAMAT.UB1_DATA]SUPPORT.REP_COM; 1
Score Good Total Tx.ovol ------- Metric Name
0.48 12905 26875 [l-=--------- RELIABILITY
0.54 22850 42392 |l---------e- MAINTAINABILITY
0.95 107745 113276 |i----=-~---- PORTABILITY
0.84 124568 148136 |l------=---- ALL_CRITERIA
10799 | 2-=---=---- sLoc
46732 | 3----s---- PHYSICAL_LINES
16173 R PHYSICAL_ADA_LINES
15918 5--nonm- ADA_UNCOMMENTED_LINES
255 e e ADA_COMMENTED_LINES
254 6------ COMMENTED _LINES_WITH_TEXT
1 6-~---- COMMENTED_LINES_BLANK
24803 R PHYSICAL_COMMENT LINES
24652 5--mmoe- COMMENT_LINES WITH_TEXT
151 R COMMENT LINES_BLANK
5756 e PHYSICAL BLANK LINES
10799 | 3--------- LOGICAL_LINES
9958 d-mmmomoe STATEMENTS
6931 5-mmmoe- EXECUTABLE_STATEMENTS
3027 §-mvemm- DECLARATIVE _STATEMENTS
830 T CONTEXT_CLAUSES
488 EREEEE WITH_CLAUSES
342 §ommooo USE_CLAUSES
1 L PRAGMAS
0.67 2902 4333 | 2---------- ANOMALY MANAGEMENT
0.44 825 1883 | 3--------- PREVENTZON
0.46 559 1207 4----omo- APPLICATIVE_DECLARATIONS
0.69 406 587 e APPLICATIVE_DECL_SPECIFICATION
0.25 153 620 §---ne-- APPLICATIVE_DECL_BODY
0.37 236 632 4------o- DEFAULT_INITIALIZATION
0.27 48 179 5--emen- DEFAULT_INIT SPECIFICATION
0.42 188 453 §--omuee DEFAULT_INIT BODY
0.45 10 22 4---meoo- NORMAL_LOOPS~
° 0 4ommeoeos CONSTRAINED NUMERICS
1.00 20 20 R CONSTRAINED_SUBTYPE
0.00 0 2 R CONSTRAINED_VARIANT RECORDS
0.85 2070 2443 | 3--------- DETECTION -
0 e T SUPPRESS_PRAGMA
0 §oeonm-- CONSTRAINT ERROR
0 §--omne- PROGRAM_ERROR
0 §--emoev STORAGE_ERROR
0 5------- NUMERIC_ERROR
0.85 2070 2443 4omceee-- USER_TYPES
0.86 128 148 §--onome USER_TYPES_FOR_PARAMETERS
0.89 1427 1604 e s USER_TYPES_SPECIFICATION
0.75 515 691 5emono-- USER_TYPES_BODY
1.00 7 7] 3m-eoeaee- RECOVERY
1.00 7 7 T s USER_EXCEPTIONS_RAISED
0.97 98816 101411 | 2---------- INDEPENDENCE
0.95 33762 35428 | 3--------- 10_INDEP
0 4---omnu- NO_MISSED_CLOSE
0.96 21154 22048 4--cooo- NO_sYs_DEP_IO
0.94 12608 13380 T et 10 NON_MIX
0.97 11719 12115 | 3--------- TASK_INDEP
0.98 9216 9414 L NO_TASK_STMT
0.93 2503 2701 T TASK_STMT_NON_MIX
0.98 31122 31629 | 3--------- MACE_INDEF

ADAMAT Results

Date: 12-31-1991
DUAO: [USER.ADAMAT.UH1

Score Good Total
0 0

0 0

Q

o]

Q

[

0

0

0

0

Q

0

0

0

4]

0

[o] o]

0.46 381 831
7

0.16 80 509
o] [o]

0.96 301 315
1.00 166 166
-1.00 15 15
0.90 60 67
0.90 60 67

0.99 23310 23367
0.98 1287 1319

0.99 22023 22048
1.00 7431 7431
1.00 7431 7431
0.99 22213 22217
1.00 22048 22048

2

0.99 165 166
0

0.00 o] 22
22

0.50 971 1955
0.43 658 1537
0.47 658 1407
0.27 153 559
0 0

0.72 467 648
0.22 36 166
0.10 2 20
0.00 o] 14
0.00 0 130
0.00 0 130
0 [¢]

0 0

0]

0.91 242 266
0.91 242 266

u

page: 2
ATA] SUPPORT.REP_COM; 1
Level------- Metric Name
PR MACHARITHINDEP
§emmmmen PACKAGE_ARITH_INDEP
B-mmm- NO_MAX_INT
6------ NO_MIN_INT
6------ NO_MAX_DIGITS
- NO_MAX_MANTISSA
6---=n- NO_FINE_DELTA
6------ NO _TICK
§mcamamn NO_INTEGER DECL
Semmnonn NO_SHORT_INTEGER DECL
5o-emm-- NO_LONG_INTEGER_DECL
§emeonn-n NO_FLOAT DECL
§remmnon NO_SHORT_FLOAT_DECL
Secmmenn NO_LONG_FLOAT_DECL
5oommeon NO_NATURAL_DECL
5--m=m-n NO_POSITIVE_DECL
Smmnemn FIXED _CLAUSE
fommmmmmm MACHREP INDEP
CHo NO_PRAGMA_PACK
§-mmmmn NUMERIC_CONSTANT DECL
Sammnenn NUMERIC_TYPE_DECLARATIONS
§memnnns CLAUSE_REP_INDEP
L NO_LENGTH_CLAUSE_FOR_SIZE
§--~=-~ NO_LENGTH_CLAUSE_FOR_STOCRAGE SIZE
-~ NO_ALIGNMENT CLAUSE_FOR_RECORD TYPES
§-=-m-- NO_COMPONENT CLAUSE_FOR_RECORD_TYPES
VPR, MACHCONF IGINDEP
§ummmmnn NO_ADDRESS_CLAUSE_IN_DECL
Gemaman NO_PRAG_SYS_PARAM
Soomman NO_REP_ATTRIBUTE
R MACRCODEINDEP
Secovenn NO_MACH_CODE_STMT
Jemmmmmme- SOFT_INDEP
dmcamaee No_s¥S_DEP_MOD
4 NO_IMPL DEP_PRAGMAS
4mmmmm o NO_PRAGMA_INTERFACE
4ommmmmee NON_ACCESS_TYPE
4onemenn- No_IMPL_DEP_ATTRS
Jommmmmene PHYS_LIM_INDEP
4mmammm- COMPILER_LIMIT
e MODULARITY
3mmmmmeo- INFORMATION_BIDING
4---mnnn- HIDLEN_INFORMATION
§ommcemn CONSTANTS_HID
Semmmmnn EXCEPTIONS_BID
§oumcan- VARIABLES_HID
§---men- TYPES_HID
§o-omoa- SUBTYPES_HID
L ECEETES TASKS_BID
T PRIVATE_INFORMATION
L PRIVATE_TYPES
S-momen- LIMITED_PRIVATE_TYPES
L EEEEEER PRIVATE_TYPE_AND_PART
LEEEEEE PRIVATE_TYPE_AND_CONSTANT
Jemmmeoee PROFILE
4=-mnen- LIMITED_SIZE_PROFILE
G-8

Support Code

ADAMAT Results

Date: 12-31-1991
DUAO: [USER.ADAMAT .UB1 |
Score Good Total
0 0
0.47 71 152
c.68 52 76
0.25 19 76
0.80 7958 9310
0.71 4586 6478
0.78 2952 3774
1.00 627 627
1.00 380 380
1.00 70 70
1.00 177 177
0.99 674 679
1.00 190 190
1.00 70 70
1.00 414 414
0.00 o 5
0)
0.35 38l 1083
0.11 3 27
0.13 12 91
0)
0 0
0.83 112 135
. 0 ¢
0.06 28 488
0.66 226 342
0.92 1270 1385
0.82 9 11
0.00 0 21
0.54 52 96
0.24 5 21
0 0
1.00 559 559
1.00 645 645
0.00 0 32
0.60 1634 2704
0.99 151 153
0.99 7 76
1.00 18 N
0.98 58 59
0.96 184 191
0.97 37 38
1.00 14 14
0.96 133 138
0.00 0 1
0)
0.08 91 1083
0.07 2 27
0.07 6 91
0 0
0 0
0.16 21 135
0 0
0.04 20 488
0.12 42 242
0.95 1208 1277

f

ATA]S
Level

page: 3
UPPORT.REP_COM:1

....... Metric Name
------- SIMPLE BLOCRS
....... COUPLING

------- NO_MULTIPLE_TYPE_DECLARATIONS
------- NO_VARIABLE_DECLARATIONS_IN_SPEC
------- SELF_DESCRIPTIVENESS -
------- COMMENTS

------- N COMMENTS

------- NCS_SPEC

E-mem- NCS PACKAGE SPEC
§-mmmmn NCS_TASK_SPEC
Gomemmn NCS SUBPROG_SPEC
------- NCS_BODY
[T NCS PACKAGE BODY
Y NCS_TASK_BODY
§-vm-mn NCS SUBPROG BODY
[P NCS_SUBUNIT

Py S— NCS BODY STUB
....... NCS_STATEMENTS
[NCS EXIT

[NCS_RETURN

6--emmm NCS GOTO

6------ NCS_ABORT

§-nnmn- NCS_DELAY

Genomm-n NCS_TERMINATE
[P NCS WITH

§--nmmm NCS_USE

....... NCS DECLARATIONS
§------ NCS_PRAGMA

P NCS RECORD_REPRESENTATION
§emmmmm NCS_ADDRESS_CLAUSE
6------ NCS ALIGNMENT CLAUSE
LY NCS_LENGTH_CLAUSE
R NCS CONSTANT DECL
§------ NCS_VARIABLE DECL
§-mwmmn NCS_ENTRY DECL
------- N COMMENTED
------- NCO SPEC

G NCO_PACKAGE_SPEC
6=---m- NCO TASK SPEC
6--nn-- NCO_SUBPROG_SPEC
------- NCO BODY

6------ NCO_PACKAGE_BODY
6-nvmm- NCO_TASK_BODY
------ NCO_SUBPROG_BODY
§=memmn NCO SUBUNIT
G- NCO_BODY_STUB
------- NCO STATEMENTS
6------ NCO_EXIT

[NCO RETURN

6------ NCO_GOTO

E-wmmmn NCO_ABORT

6------ NCO_DELAY

6------ NCO_TERMINATE
6------ NCO_WITH

6------ NCO_USE

------- NCO_DECLARATIONS

Support Code

ADAMAT Results

Date: 12-31-1991
DUAO:[USER.ADAMAT.UEI
Score Good Total
0.64 ? 11
Q.00] 7
0.41 13 32
0.71 5 7
0 Q
0.99 557 559
0.97 626 645
0.00 [+] 16
0.98 3372 3432
0.98 3372 3432
0.44 10003 22542
0.82 1128 1372
0.83 1098 1319
0.57 30 53
0.30 2731 9048
0.13 218 1702
0.39 35 89
0.11 20 178
0.00 [¢] 8
0.35 2458 7071
0.51 6144 12122
0.23 353 1535
0.81 112 138
-0.68 193 282
0.95 252 266
0.74 275 371
0.94 1436 1535
0.82 1253 153%
0 o]
0.20 318 1580
0 o]
0.35 1535 4348
0.79 211 266
0.77 206 266
0.49 3918 7985
0.49 3918 7985
0.59 1797 3038
0.89 1169 1319
0.29 358 1242
0.76 215 282
0.28 55 193
0.91 1505 1646
0.09 13 151
[o] o]
0.99 1438 1441
1.00 54 54
o] 0
0.32 401 1236
0.00 1 282
0.00 1 282
o] o]
0.50 281 562
1.00 280 280
0.00 1 282
o] 0
0.04 1 27

T

page: ¢
ATA] SUPPORT.REP_COM; 1
Level------- Metric Name

Gommmnm NCO_PRAGMA
6--cmen NCO_RECORD_REPRESENTATION
6------ NCO ADDRESS CLAUSE
Y NCO_ALIGNMENT CLAUSE
§--=--= NCO_LENGTH_CLAUSE
G NCO_CONSTANT_DECL
§-m-mmm NCO_VARIABLE DECL
§emmmmm NCO_ENTRY_DECL
¢ P IDENTIFIER
docmmmm NC_PREDEFINED_ WORDS
r IR, SIMPLICITY
;P CODING_SIMPLICITY
4ommmmmem SIMPLE_BOOLEAN_EXPRESSION
dommmmem EXPRES_TO_DO_BOOLEAN_ASSIGN
PR DESIGN_SIMPLICITY
4ommmm e CALLS_TO_PROCEDURES
4m-mmm- ARRAY TYPE EXPLICIT
gememe SUBTYPE_EXPLICIT
demmmmmne ARRAY_RANGE_TYPE_EXPLICIT
4-mmmeme DECLARATIONS CONTAIN LITERALS
[P FLOW_SIMPLICITY
fommemmmm BRANCH_CONSTRUCTS
4ommmmme SINGLE EXIT SUBPROGRAM
4emmmmnae FOR _LOOPS
§ommmemme LEVEL_OF NESTING BY MODULE
4ommmmmme LEVEL OF NESTING
demmmmmen STRUCTURED BRANCH CONSTRUCT
4-mmmmme- NON BACK BRANCH CONSTRUCT
fommmme- NO LABELS
dommmmmen DECISIONS
L el GOTOS
dommmmme BRANCH_AND_NESTING
P CYCLOMATIC COMPLEXITY
domemonee MULTIPLE_COND CYCLOMATIC COMPLEXITY
PR SYSTEM CLARITY
L . STYLE
4ommmmmmm EXPRESSION_STYLE
Seommmn- NON_NEGATED BOOLEAN EXPRESSIONS
[EXPRESSIONS_PARENTHESIZED
§-commn NO_WHILE_LOOPS
S FOR_LOOPS_WITH_TYPE
4ommmmme DECLARATION_STYLE
Seemmman NO_DEFAULT_MODE_PARAMETERS
JRSS. PRIVATE_ACCESS_TYPES
SRS, SINGLE_OBJECT DECLARATION LISTS
Y SINGLE_IMPLICIT TYPE_ARRAY
Se-momn- NO_INITIALIZATION BY NEW
4o NAMING_STYLE
Y STRUCTURES_NAMED
6--mc-n NAMED_LOGPS
6---nn- NAMED BLOCKS
YRR, STRUCTURE_ENDS WITH_NAME
6------ MODULE_END_WITH_ NAME
[LOOP_END_WITH_NAME
6--mn-- sLocx END wITH _NAME
§omoae- NAMED_EXITS

Support Code

ADAMAT Resuits Support Code

Date: 12-31-1991 page: 5
DUAO: [USER.ADAHAT.UEl_ ATA] SUPPORT.REP_COM; 1
Score Good Total TLevel ------- Metric Name

0.32 118 365 §rmemmm- NAMED AGGREGATE

0.1:0 215 2067 d--naoco-- QUALIFICATION STYLE

0.00 Q 365 ! §---v--- QUALIFIED_AGGREGATE

0.13 215 1702 [S5-=m---- QUALIFIED_SUBPROGRAM

G-1

ADAMAT Results GAT & Services
Date: 12-30-1991 page: 1
DUAQ: [USER.ADAMAT.UH1_DATA]GAT_AND_SERVICES.REP_COM;1
Score Good Total TLevel-—:---— Metric Name
0.57 9354 16455 |le-----ce--- RELIABILITY
0.69 18312 26453 |le--------o- MAINTAINABILITY
0.97 77892 80314 |l-=-=------- PORTABILITY
0.90 91112 101721 |{l-------u--- ALL_CRITERIA
7256 | 2------e--- sLeC
50999 | 3--------- PHYSICAL LINES
11841 L PHYSICAL ADA_LINES
10574 §emmmeo- ADA_UNCOMMENTED_LINES
1267 5-mmo-o- ADA_COMMENTED _LINES
1266 6~----- COMMENTED_LINES_WITH_TEXT
1 6------ COMMENTED_LINES BLANK
3z029 4o PHYSICAL COMMENT LINES
31824 R COMMENT_LINES_WITH_TEXT
205 §emmuan- COMMENT_LINES BLANK
7129 4ommmmne- PHYSICAL BLANK_LINES
7256 | 3---~----- LOGICAL_LINES
7007 4o STATEMENTS
4202 L EXECUTABLE_STATEMENTS
2805 R DECLARATIVE_STATEMENTS
228 R CONTEXT_CLAUSES
140 5ovmoo- WITH_CLAUSES
88 §----m-- USE_CLAUSES
21 e PRAGMAS
0.65 2774 4276 | 2---------- ANOMALY MANAGEMENT
0.33 505 1525 | 3--------- PREVENTION
0.17 136 782 d----ooe- APPLICATIVE DECLARATIONS
0.46 43 94 §--o-oe- APPLICATIVE_DECL_SPECIFICATION
0.14 93 688 §-ammms APPLICATIVE_DECL_BODY
0.44 281 642 S A DEFAULT_INITIALIZATION
0.57 29 51 5----o-- DEFAULT INIT SPECIFICATION
0.43 252 591 §--mmn-- DEFAULT_INIT_BODY
0.76 13 17 domommmo- NORMAL_TOOPS
0 0 4-omomoee CONSTRAINED_NUMERICS
0.89 75 84 L CONSTRAINED SUBTYPE
° 0 R CONSTRAINED VARIANT RECORDS
0.86 2185 2545 | 3--------- DETECTION -
° 0 d--m-omo- SUPPRESS_PRAGMA
0 5----e-- CONSTRAINT ERROR
0 R PROGRAM_ERROR
0 §--mmme- STCRAGE_ERROR
0 §---eo-- NUMERIC_ERROR
0.86 2185 2545 R USER_TYPES
0.89 494 553 §ammnone USER_TYPES_FOR_PARAMETERS
0.85 869 1022 §-----o- USER_TYPES_SPECIFICATION
0.85 822 970 §--c---- USER_TYPES_BODY
0.41 84 206 | 3--------- RECOVERY
0.41 84 206 L USER_EXCEPTICNS RAISED
0.99 70026 70992 | 2---------- INDEPENDENCE
0.98 24922 25428 | 3--------- I0_INDEP
13 O NO_MISSED_CLOSE
0.98 16057 16464 4-mmmnoo NO_SYS_DEP_IO
0.99 8865 8951 R 10_NON_MIX
0.99 6231 6275 | 3--=------ TASK_INDEP
0.99 6144 6166 e NO_TASK_STMT
0.80 87 109 R TASK_STMT_NON_MIX
0.98 22206 22602 | 3--------- MACH_INDEP

G-12

ADAMAT Results

Date: 12-30-1991

DUAOQ: [USER.ADAMAT.UH1
Score Good Total
0.00 0 45
0.00 o] 4
1

1

0

0

o]

2

0

o]

0

o]

0

0

o]

41

[[o]

0.83 358 432
1

0.14 10 74
1.00 3 3
0.97 345 354
0.99 201 204
-1.00 4 4
0.96 70 73
0.96 70 73

0.98 17296 17573
0.99 1103 1109

0.98 16193 16464
1.00 4552 4552
1,00 4552 4552
0.99 16667 16683
1.00 16464 16464

3

12

0.99 203 204
0

0.00 0 4
4

0.68 1056 1548
0.62 765 1226
0.71 757 1073
0.68 93 136
o} 0

0.92 595 646
0.28 58 204
0.13 11 84
0.00 0 3
0.05 8 153
0.01 2 146
0.50 1 2
1.00 2 P4
1.00 3 3
0.97 253 260
0.97 253 260

page: 2

ATA]GAT_AND_SERVICES.REP_COM; 1

TLevel -------

Metric Name

MACEARITEINDEP
PACKAGE_ARITH_INDEP
NO_MAX_INT

NO_MIN_INT

NO_MAX DIGITS

NO_MAX MANTISSA
NO_FINE_DELTA

NO_TICK

NO_INTEGER_DECL
NO_SHORT_INTEGER DECL
NO_LONG_INTEGER DECL
NO_FLOAT DECL
NO_SHORT_FLOAT_DECL
NO_LONG_FLOAT DECL
NO_NATURAL_DECL
NO_POSITIVE_DECL

FIXED CLAUSE

MACHREPINDEP
NO_PRAGMA_PACK
NUMERIC_CONSTANT_DECL
NUMERIC_TYPE_DECLARATIONS
CLAUSE_REP_INDEP
NO_LENGTH_CLAUSE_FOR_SIZE
NO_LENGTH_CLAUSE_FOR_STORAGE_SIZE
NO_ALIGNMENT CLAUSE FOR_RECORD_TYPES
NO_COMPONENT CLAUSE_FOR_RECORD_TYPES
MACHCONF IGINDEP
NO_ADDRESS_CLAUSE_IN_DECL
NO_PRAG_SYS_PARAM
NO_REP_ATTRIBUTE
MACHCODEINDEP
NO_MACH_CODE_STMT
SOFT_INDEP

NO_SYs DEP_MOD

NO_IMPL DEP_PRAGMAS
NO_PRAGMA_INTERFACE
NON_ACCESS_TYPE

NO_IMPL DEP_ATTRS
PHYS_LIM_INDEP
COMPILER_LIMIT

MODULARITY

INFORMATION BIDING
HIDDEN INFORMATION
CONSTANTS_HID
EXCEPTIONS_HID
VARIABLES_HID

TYPES_HID

SUBTYPES_HID

TASKS_HID
PRIVATE_INFORMATION
PRIVATE_TYPES
LIMITED_PRIVATE_TYPES
PRIVATE_TYPE_AND_PART
PRIVATE_TYPE_AND_CONSTANT
PROFILE

LIMITED SIZE_PROFILE

G-13

GAT & Services

ADAMAT Resuits
Date: 12-30-1991
DUAO: [USER.ADAMAT . UH1
Score Good Total
[s} 0
Q.61 18 62
0.58 18 31
0.65 20 31
0.88 6810 1774
0.681 3560 4386
0.91 2484 2722
0.99 744 746
1.00 155 155
0.87 13 15
1.00 576 576
0.98 709 727
1.00 100 100
1.00 15 15
1.00 594 594
0.00 0 15
0.00 0 3
0.52 208 397
0.00 0 20
0.01 1 148
0 0
0 0
1.00 1 1
. 0 [0
0.84 118 140
1.00 a8 88
0.97 823 852
1.00 21 21
0.22 2 9
0.89 16 is
0.00 Y 9
0.44 4 9
1.00 134 134
1.00 640 640
0.50 6 12
0.65 1076 1664
0.71 160 226
1.00 31 i1
1.00 3 3
0.66 126 192
0.96 215 225
1.00 20 20
1.00 3 3
0.97 192 198
0.00 0 3
0.00 0 1
0.14 54 397
0.00 0 20
0.01 1 148
0 0
0 0
1.00 1 1
0 0
0.26 37 140
0.17 15 88
0.79 647 816

o

page: 3
ATA]GAT AND_SERVICES.REP_COM;1
Level------- Metric Name
PR SIMPLE BLOCKS
L R COUPLING
4ommmmeee NO_MULTIPLE_TYPE_DECLARATIONS
fammmmmme NO_VARIABLE_DECLARATIONS IN_SPEC
Qe SELF DESCRIPTIVENESS
Jacmmmmmnn COMMENTS
T N_COMMENTS
S NCS_SPEC
Gmmmmmm NCS_PACKAGE_SPEC
6-mmmnm NCS_TASK_SPEC
6----== NCS SUBPROG_SPEC
YOS NCS_BODY
G- NCS_PACKAGE_BODY
fmmmmm NCS TASK_BODY
§mmmm NCS_SUBPROG_BODY
Gmmmmmm NCS_SUBUNIT
§mmmmm NCS_BODY_STUB
§ommmme NCS_STATEMENTS
6~-——-- NCS EXIT
6------ NCS_RETURN
6e--mv NCS GOTO
6=~ NCS_ABORT
fummnmm NCS DELAY
6~--~--- NCS_TERMINATE
Gmmmmmm NCS WITH
[T—— NCS USE
[Y NCS DECLARATIONS
Gmmn-n= NCS_PRAGMA
6---~-= NCS_RECORD_REPRESENTATION
6---=-m NCS_ADDRESS_CLAUSE
6---~-- NCS_ALIGNMENT CLAUSE
6----- Ncs_LENGTH_CLAUSE
6-—==-= NCS_CONSTANT DECL
6------ NCS_VARIABLE_DECL
6---=n~ NCS ENTRY DECL
dmmmmmmoe N_CGMMENTED
§mmmmne NCO_SPEC
Grmmmmm NCO_PACKAGE_SPEC
6--~--- NCO_TASK_SPEC
[T NCO_SUBPROG_SPEC
§eccmme- NCO_BODY
6--mnm- NCO_PACKAGE_BODY
G-mmmmm NCO_TASK_BODY
6-----= NCO_SUBPROG_BODY
6----m= NCO_SUBUNIT
6--mnmm NCO_BODY_STUB
[ORI NCO_STATEMENTS
6-=-m=- KCO_EXIT
6---m-= NCO RETURN
L NCO_GOTO
§-m-mm- NCO_ABORT
G-mmmm- NCO_DELAY
Gmmmmn- NCO TERMINATE
6------ NCO_WITH
G-mmmm- NCO USE
[NCO_DECLARATTONS
G-14

GAT & Services

ADAMAT Results
Date: 12-30-1991
DUAO: [USER.ADAMAT.UH1
Score Good Total
0.19 4 21
0.67 2 3
0.67 4 6
0.00 0 3
0.67 2 3
0.96 128 134
0.78 501 640
1.00 6 6
0.96 3250 3388
0.96 3250 33ses
0.54 6580 12179
0.87 571 657
0.99 571 579
0.00 o} 78
0.27 1053 3846
0.48 412 855
0.93 39 42
0.56 84 151
0.52 17 33
0.18 501 2765
0.65 4956 7676
0.54 566 1040
0.84 167 198
.0.51 47 93
0.98 255 260
0.90 311 345
0.66 686 1040
0.91 947 1040
0 0
0.68 490 718
o] [o]
0.43 1040 2422
0.87 225 260
0.85 222 260
0.78 3866 4952
0.78 31866 4952
0.74 957 1295
0.99 571 579
0.54 312 576
0.69 64 93
0.21 10 47
0.97 2204 2264
0.90 456 509
o] Q
0.99 1745 1752
1.00 3 3
[+] 0
0.57 288 501
0.00 0 93
0.00 o] 93
0 +]
0.72 254 351
c.98 254 258
0.00 o] 93
o] 0
0.00 0 20
Date: 12-30-1991

page: 4

ATA]GAT_AND_SERVICES.REP_COM;1
Lesvel------- Metric Name

Y NCO_PRAGMA
6------ NCO_RECORD_REPRESENTATION
- NCO_ADDRESS_CLAUSE
6------ NCO_ALIGNMENT CLAUSE
P NCO_LENGTH_CLAUSE
6-----= NCO_CONSTANT DECL
PR NCO_VARIABLE DECL
6--n--- NCO_ENTRY_DECL
PRSP IDENTIFIER
4mmmmmm e NO_PREDEFINED_WORDS
.......... SIMPLICITY
[PRI CODING_SIMPLICITY
PR SIMPLE_BOOLEAN EXPRESSION
RN EXPRES_TO_DO_BOOLEAN_ ASSIGN
PR DESIGN SIMPLICITY
4o CALLS_TO_PROCEDURES
P ARRAY_TYPE_EXPLICIT
dacmmmnmn SUBTYPE_EXPLICIT
IR ARRAY RANGE_TYPE_EXPLICIT
doceemenn DECLARATIONS_CONTAIN LITERALS
RSP FLOW_SIMPLICITY -
4mommmmme BRANCH_CONSTRUCTS
4ommmmeen SINGLE_EXIT_SUBPROGRAM
PRI FOR_LOOPS
RPN LEVEL_OF NESTING_BY MCDULE
4mmmommm LEVEL OF NESTING
dommmm - STRUCTURED_BRANCH_CONSTRUCT
Gocmmmm e NON_BACK_BRANCH_CONSTRUCT
dummmmmm NO_LABELS
PR DECISIONS

fommmmm e BRANCH AND_NESTING
fommmm CYCLOMATIC COMPLEXITY
dmmmmem e MULTZPLE_COND_CYCLOMATIC_COMPLEXITY
.......... SYSTEM CLARITY -
PP STYLE
R EXPRESSION STYLE
§emenmon NON_NEGATED_BOOLEAN EXPRESSIONS
§emmmmm EXPRESSIONS PARENTHESIZED
§ecoaoe- NO_WHILE_LOOPS
L PU FOR_LOOPS_WITH_TYPE
docmmmame DECLARATICN_STYLE
§ommmom NO_DEFAULT | MODE PARAMETERS
§ommmmnn PRIVATE_ACCESS_TYPES
§ommmmme SINGLE_OBJECT DECLARATICR LISTS
[T SINGLE_IMPLICIT TYPE_ARRAY
§emmmmo- NO_INITIALIZATION BY NEW
doccmmm- NAMING STYLE
LY STRUCTURES_NAMED
§-m-mm NAMED LOOPS
6--m-n- NAMED BLOCKS
§--m--- STRUCTURE_ENDS_WITH_NAME
Gemmmm- MODULE_END_WITH_NAME
§-mmmnn LOOP_END_WITH_NAME
§--n=n- BLOCK_END_WITH _NAME
PR NAMED_EXITS

page: 5

DUAO:(USER.ADAHAT.UHI_DATA]GAT_AND_SERVICES.REP_COM:1

G-15

GAT & Services

ADAMAT Results
Score Good
0.92 kY 37
0.47 417 892
8.00 Q 37
0.49 417 855

NAMED_AGGREGATE
QUALIFICATION STYLE
QUALIFIED AGGREGATE
QUALIFIED SUBPROGRAM

G-16

GAT & Services

REFERENCES

Jon D. Valett and Frank E. McGarry, "A Summary of Software Measurement Experiences in the
Software Engineering Laboratory", The Journal of System and Software, Vol. 9, pages 137-148, 1989.

Frank McGarry, Linda Esker, Kelvin Quimby, "Evolution of Ada Technology in a Production
Environment", Goddard Space Flight Center, Greenbelt, MD, 1988.

Frank McGarry, Sharon Waligora, "Experiments in SE Technology: Recent Studies in the SEL",
Software Engineering Laboratory, December 1991.

IIT Research Institute, Test Case Study: Estimating the Cost of Ada Software Development, April

1989,

Kenneth J. Lee, et. al., An OOD Paradigm for Flight Simulators, 2nd Edition, CMU/SEI-88-TR-30,

September 1988.

IIT Research Institute, A Descriptive Evaluation of Software Sizing Models, September 1987.
Boeing Aerospace Company. Specification of Software Quality Attributes Software Quality Evaluation

Handbook, RADC-TR-85-37, Volume III (of three), February 1985.

J. D. Anderson, J. A. Perkins, "Experience Using an Automated Metrics Framework in the Review

of Ada Source for WIS", Proceeding of the 6th Nationai Conference on Ada Technology, 1988.

Ken Zwanzig, ed., Handbook for Estimating Using Function Points, GUIDE International, November,
1984.

